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Abstract 
 

A large percentage of computed results have fewer 
significant bits compared to the full width of a register.  We 
exploit this fact to pack multiple results into a single 
physical register to reduce the pressure on the register file 
in a superscalar processor.  Two schemes for dynamically 
packing multiple "narrow-width" results into partitions 
within a single register are evaluated.  The first scheme is 
conservative and allocates a full-width register for a 
computed result.  If the computed result turns out to be 
narrow, the result is reallocated to partitions within a 
common register, freeing up the full-width register.  The 
second scheme allocates register partitions based on a 
prediction of the width of the result and reallocates register 
partitions when the actual result width is higher than what 
was predicted.  If the actual width is narrower than what 
was predicted, allocated partitions are freed up.  A detailed 
evaluation of our schemes show that average IPC gains of 
up to 15% can be realized across the SPEC 2000 
benchmarks on a somewhat register-constrained datapath. 
 
1. Introduction 

 
Modern superscalar processors use sizable physical 

register files to support large instruction windows for 
exploiting available code parallelism. A free physical 
register is allocated to hold a result of any new instruction 
with a destination register. This register is deallocated only 
when the next instruction writing to the same architectural 
(logical) register commits. Such a conservative register 
management guarantees that until all instructions between 
the two consecutive definitions of the same architectural 
register commit, the earlier definition is available and can 
be resurrected should the later definition be squashed as a 
result of a branch misprediction, an exception or an  
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interrupt. Many recent superscalar processors, such as the 
Intel’s Pentium 4 [9], MIPS 10000 [20] and Alpha 21264  
[12] implement the register files in this manner. While 
significantly simplifying the recovery to a precise state, this 
arrangement increases the register pressure and effectively 
mandates the use of larger register files if pipeline stalls due 
to the lack of physical registers are to be avoided. 

The problem is exacerbated in processors that support 
large instruction windows: the access time of the large 
register file can force the use of a slower clock.  
Additionally, as higher issue widths are used to support 
large instruction windows, the number of read and write 
ports on the register file increases commensurately, again 
increasing the physical dimensions of the register file, 
slowing it down further. As a result, physical register files 
with a multi-cycle access time may become a necessity. 
Consequently, complex multi-stage bypass networks may 
be needed to avoid the performance degradation associated 
with the “holes” in the availability of the instruction source 
operands [5]. In addition, as the register file access stages 
are within a branch misprediction loop [3], the performance 
may degrade due to the increased branch misprediction 
latency. Finally, large register files also dissipate more 
power. The power dissipated in the register file can be 
anywhere between 10% and 25% of the total chip power 
[2], [23]. The situation is further exacerbated in the SMT 
processors, where the pressure on the register file is 
increased and larger physical register files are needed to 
support multiple thread contexts. 

An alternative to building large register files is to use 
smaller number of registers, but manage them more 
effectively. Researchers have generally exploited the 
inefficiencies in register usage to reduce the number of 
registers by using late register allocation [7, 19, 33], early 
deallocation [14, 15, 16, 24] and register sharing [4, 11, 18]. 
In this paper, we propose alternative mechanisms for 
reducing the register file pressure. Our techniques are based 
on the observation that a large percentage of instructions  
produce narrow-width results. Such operands/results require  
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fewer than the maximum number of bits available in a 
register for their storage. This situation can be exploited by 
packing multiple narrow-width results into the same 
register, thus reducing wastages in the register file and 
resulting in higher register file utilization. Such 
optimization can be especially attractive in the context of a 
64-bit datapath, where 64-bit wide physical register files are 
used and unless the produced result is a double-precision 
floating point value (or, less frequently, a long integer 
value), significant register wastages occur. 

The main contributions of this paper are as follows: 
• We propose register packing – a set of microarchitectural 

techniques, both deterministic and predictive, to pack 
multiple narrow-width register values into a common 
physical register. Our technique results in 15% 
performance improvement on the average across Spec 
2000 benchmarks, for a processor with somewhat 
register-constrained datapath configuration. 

• We evaluate several register reassignment schemes and 
also analyze several mechanisms for handling possible 
width mispredictions and avoiding deadlocks. 
The rest of the paper is organized as follows. We discuss 

the distribution of the produced result widths and also study 
the predictability of the result widths in Section 2. Section 3 
describes the general considerations involved in packing of 
multiple results into a common physical register. Our 
techniques for reducing register pressure are described in 
Sections 4 and 5. Our simulation methodology is described 
in Section 6, followed by the simulation results in Section 
7. We review the related work in Section 8 and offer our 
concluding remarks in Section 9.  

 
2. Motivations 

 
It has been well documented in the recent literature that 

many operand and result values in a datapath have narrow 
width [27, 31, 24]. In this section, we analyze the data 
width characteristics of the SPEC 2000 benchmarks that 
were used in this work. We also study the physical register 
file utilization based on the bit-occupancy of the individual 
registers and finally explore the predictability of the result 
widths using some additional bits in the I-cache. 

First, we define a narrow-width value. The width of a 
value is the position of the first zero (or one) bit, such that 
all the bits in the more significant positions are also zeroes 
(or ones). The value with a width smaller than the full width 
of the datapath (32-bit or 64-bit typically) is then called a 
narrow-width value. One can obviously define several 
classes of narrow-width values – for example, those that 
can be defined using 8 bits, 16 bits, 24 bits etc (more on this 
in Section 3). 

Figure 1 shows the width distribution of the generated 
register values, both committed and speculative. On the 
average, about 40% of all values can be represented using 

just 16 bits. Obviously, if a full-sized 64-bit register would 
be used to store each such result, significant inefficiencies 
in the register file usage would occur. Another 45% of all 
values can be represented using 32 bits. Only about 15% of 
the generated values require 64-bit storage within the 
register file to represent the result. Results shown in Figure 
1 suggest that significantly better use of a register file is 
possible if narrow width results can be packed within a 
single 64-bit physical register. This observation has 
motivated this work, as well as the works of [27, 31, 24]. 
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Figure 1 – Width Distribution 

The second observation that motivated this work is that 
the widths of the produced results are highly predictable, as 
was also noted in [31]. For this study, for each instruction 
in the I-cache, we stored two additional bits signifying the 
width of the result produced by this instruction during its 
last dynamic instantiation. The 2 bits allow us to distinguish 
4 possibilities: a) a result was less than 16 bit-wide, b) 
result was between 16 and 32 bits-wide, c) result was 
between 32 and 48 bits-wide and d) result was greater than 
48 bits-wide. Figure 2 depicts the percentage of cases 
(captured by the two bits kept in the I-cache) where a 
dynamic instance of a static instruction generated a result 
within the same width class as the previous dynamic 
instance of the same static instruction. For each benchmark, 
2 bars are presented. The left bar shows the percentage of 
cases where a dynamic instance of a static instruction 
generated a result exactly within the same width class as the 
previous instance of the same static instruction whereas the 
bar on the right shows the percentage of cases where a 
generated result is either within the exact same width class 
or has a larger width. This simple cache based last-width 
class prediction achieves an average prediction accuracy of 
94% when width overpredictions are treated as 
mispredictions (left bar) and 98% when they are not (right 
bar). 

High predictability of data widths was also shown in 
[31] where the data-width predictors similar to the load 
value predictor and the bimodal saturating counter branch 
predictor were evaluated. The prediction accuracies 
presented in [31] are in line with the results of Figure 2. 
The specific width predictor design is not the central part of 



 

 

this paper, the important thing to notice is that the data 
widths are highly predictable and this predictability can be 
efficiently exploited using a variety of predictors. 
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Figure 2 – Width Prediction Accuracy 
In the next section, we formally define the width classes 

and describe the general issues in maintaining multiple 
results within a common physical register. 
 
3. Packing Multiple Results into a Register 
 

All results which are stored in physical registers are 
grouped into several “width” classes, say C1, C2, .. Cn, with 
associated bit widths w1, w2, .. wn. A result belongs to the 
width class C1 if the number of significant bits in the result 
is w1 or lower; otherwise it belongs to the class Ck, if the 
number of significant bits of the result are within wk-1 + 1 
and wk. Multiple results can be stored within a single 
physical register of width D bits (D = 32 or 64 in 
contemporary designs) as long as the sum of the widths 
associated with the various classes of the stored results is 
less than or equal to D. In theory, a more efficient use of the 
physical registers is possible if a result class is associated 
with each possible value of the width from 1 through N 
(i.e., if n = N). However, such an organization grossly 
complicates the management of free “slots” within physical 
registers and also introduces delays in addressing a result 
stored within a register as a combination of the physical 
register address and specifiers for the size (or class) and the 
location of the result within the physical register. 

 
3.1 Operand Access and Partition Management 

 
The addressing of a narrow-width result, along with 

possibly other narrow results within a common physical 
register, as well as the management of the free regions 
within such registers, are considerably simplified if the 
number of classes are limited. Further simplifications and 
additional efficiencies result if the classes are integer 
multiples of a single byte or of a half word. To see this, 
consider a 64-bit physical register, i.e., D = 64 (We will use 
the example of a 64-bit register throughout this section to 

illustrate the basic concept behind our schemes; the 
discussion can be extended to other widths as well.). The 
result classes in this case of a 64-bit register are C1, C2, C3 
and C4, which have the associated data widths of 16, 32, 48 
and 64, respectively. This register can hold up to: 
• 4 distinct results belonging to class C1 
• 2 distinct results belonging to class C2 
• 1 distinct result belonging to class C3 or C4 
• 2 distinct results in class C1 and another in class C2 
• 2 distinct results, one in class C1 and in class C3 

Figure 3 –Data Steering Logic 
For this 64-bit register, one can also use a 4-bit mask to 

identify where a result is stored within a register. Bits in 
this mask correspond to the four consecutive 16-bit fields 
within the 64-bit register. The use of this mask bit to 
specify the locations of the results is another advantage – it 
is not necessary to use contiguous fields to hold parts of the 
same result within a physical register. For example, the 
fields used by a result belonging to class C2 (i.e., any result 
with 17 to 32 significant bits) can be possibly indicated by 
the following bitmasks:  
• 1100, 0110, 0011 (results stored within two contiguous 

16-bit parts) 
• 1010, 1001, 0101 (results stored within non-contiguous 

16-bit parts) 
The ability to store a result within the non-contiguous 

fields of a physical register improves the efficiency of using 
the space within the register file. The use of the four classes 
described above also simplifies the data steering circuitry 
needed to access a register for a result and also simplifies 
the sign extension logic that is needed to “expand” a 
narrow-width operand to the full width before commencing 
any operations on the data. A result is now addressed with a 
combination of two entities: a physical register address and 
a bit-mask (called parts) that identifies the part fields used 
for storing the result. 

Figure 3 depicts an example of the data steering logic 
required for collecting results that can be stored in registers 
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that have 4 partitions each.  Each partition is k-bits wide.  
The multiplexers in this logic are inserted on the bit lines 
leading into the sense amp array from the bitcell array 
implementing the registers.  Such multiplexers can be 
typically implemented using n-transistors (in a CMOS 
implementation), as is routinely done in some RAMs that 
isolate the bitlines for fast sensing or in RAM designs that 
use column multiplexing.  The logic of Figure 3 also 
includes a sign bit extension facility, as shown, that copies 
the sign bit into the most significant bit positions of narrow-
width results.  The multiplexers are controlled using the 
parts bit used to address a stored result (in conjunction with 
a register address).  The multiplexers are thus turned on 
well before sensing is enabled.  The propagation delay of 
the data steering logic (the delay of 2 n-transistor pass 
devices, at most) is almost absorbed by placing this logic 
ahead of the sense amp array.  The inclusion of this logic 
grows the effective area of the register file slightly. 
 
3.2 Managing Free Regions within a Register 

 
We continue with the above example of a 64-bit 

datapath that has 64-bit physical registers. At any time, four 
free lists, FL1 through FL4, are used. FLk (k = 1, 2, 3 or 4) 
lists all the physical registers that have exactly k 16-bit 
parts of free space, not necessarily contiguous. Entries in 
these free lists are thus specified by two entities: a physical 
register address and a bit-mask (free_parts) that indicates 
the locations of the free byte field(s). Note that free_parts 
mask for entries in FL4 is unnecessary. Note also that a 
physical register is listed only within a single free list. 
Storage Allocation: If, at any time, a free space of n parts 
is needed to store a narrow-width operand, the free list FLn 
is searched.  If an allocation is possible, that allocation is 
made for the storage of the result. If, on the other hand, FLn 
is empty, the requested storage is looked for in FLk, where  
k > n.  If there are multiple candidates for FLk, one can 
either use a rotating fit, a best fit or a worst-fit algorithm to 
determine the free list that would be used for the allocation 
(we used the best fit algorithm throughout the rest of this 
paper, where the first free list that is checked for 
performing a new register allocation is the one that 
corresponds to the size of the actually calculated result – 
say FLk. On a failure to allocate a new register from this 
list, the free list FLk+1 is checked and so on. Of course, to 
insure that these activities can be performed within one 
cycle, all these free lists can be searched in parallel). After 
the allocation is performed, the free_parts field of the 
register used for the allocation is updated and an entry is set 
up in a possibly different list for the remaining portions of 
the register. For example, consider the scenario, where FL1 
is empty and the other free lists are non-empty. If register 
space for a single part is needed, let’s assume that we use a 
best-fit algorithm and use a register from FL2, say register 
p, with a free_parts mask of 0101. To perform this 

allocation, we remove this entry from FL2 and allocate the 
last part field of p. A new entry is then made in FL1 with 
the value (p, 0100). 
Storage Deallocation:  The process of deallocating the part 
fields within a physical register has analogous, but 
complementary steps. The challenge in this case is to 
quickly locate the entry for the register, if any, and move it 
to another free list after updating the free_parts mask bits.  
This process can be facilitated if the free lists are kept 
sorted by the physical register address.  One can also 
imagine alternative implementations of the lists and the 
lookup, including the use of indirection entries or hash 
addressing – such discussions are not central to this paper.  
We believe that techniques exist for the fast lookup and 
management of these free lists, with the described 
allocation and deallocation semantics. 

 
4. Conservative Packing 
 

Our first approach towards dynamically packing 
multiple results into a single register is very conservative in 
nature and assigns a full-width register for the destination 
register of an instruction at the time of register renaming.  
Again, we use the example for the 64-bit physical registers. 

 
4.1 Main Differences with the Conventional Design 

 
Following the scheduling of the instruction producing a 

register value, its dependent instructions in the issue queue 
are awakened by the broadcast of the destination register id 
as wakeup tag.  When a result has been computed for the 
instruction, the following steps are performed concurrently: 
• The result is forwarded to dependent instructions in the 

usual manner. 
• The number of significant bits in the result (and thus the 

class to which the result belongs) is determined.  
• If the result requires all of the part fields in the allocated 

physical register, no further actions are necessary and the 
writeback to the register file proceeds normally. 

• If the result requires fewer parts, an allocation is made 
using the free lists FL3 through FL1, if possible. If an 
allocation is not possible, the result is stored within the 
required part fields of the originally allocated physical 
register and the unused portion of that register is added to 
the appropriate allocation list. The new allocation made 
for the narrow-width result, be it from the originally 
allocated full-width register or from a different physical 
register (obtained from FL3 through FL1) is noted (i.e., 
saved in a latch). The result is also saved in a latch.  
In the cycle following the writeback, if the result was 

reallocated to a different register or a portion of the 
originally allocated full-width register, the following steps 
are performed concurrently: 



 

 

• A special tag broadcast is made to notify the still-waiting 
dependents of this instruction, if any, in the issue queue 
that instead of the original physical register address they 
were supposed to use to access this result, they have to 
use the newly-assigned address. The issue queue logic 
has to be modified to permit this update and such 
modifications are described later. At the end of this 
update, each issue queue entry would have the 
information of what parts of which physical register have 
to be read to supply the source operands for instruction 
execution. 

• The result is written into the newly allocated region of the 
register file. 

• The ROB entry of the instruction whose result was 
moved to the newly-allocated register is updated to 
reflect this update. This requires the addition of write 
ports to only the part of the ROB that has the destination 
information. 

• The ROB entry of the instruction that will release the 
reallocated register has to be updated to reflect the new 
assignment (if the instruction has passed the rename 
stage). 

• If the destination architectural register was not renamed, 
the rename table entry is also updated to reflect this new 
allocation. An interlocking logic is needed to ensure that 
instructions that are reading the rename table entry in the 
cycle they are updated get the most recent value of the 
entry. 
When the rename table is fully checkpointed on 

branches, the update to the rename table from the writeback 
stage has to be propagated to all of the checkpointed copies 
that map to the originally allocated physical register. As 
noted in [24], such updates can be performed in the 
background. If the rename table update performed at the 
time of renaming the instruction’s destination saves the old 
mapping in the ROB entry of the instruction, the update to 
the rename table entry from the writeback stage on a 
register reallocation can be performed in isolation, without 
any need to update any other copies. Of course, in this latter 
scheme, recovering from branch mispredictions requires 
walking back the ROB entries serially. In our simulations, 
we assumed that a full checkpoint of the rename table is 
created on branches. 

The steps described above basically permit out-of-order 
execution to continue correctly when the destination 
physical register is re-allocated to suit the width of the 
result. Note also that this scheme does not suffer from any 
deadlocking because of the lack of a register for the width-
based reallocation. Furthermore, the reallocation does not 
tie up any new full-width registers for the dispatch. The 
reallocation simply makes (further) use of an already-
allocated full-width register. The full-width registers that 
are freed up as a result of the reallocation simply ease the 
register file pressure and improve the IPC. 

Note also that all dependent instructions that were issued 
before the result was written back, pick up the result off of 
the bypass network using the originally allocated (full-
width) physical register address; these instructions are 
functionally unaffected by the reallocations in progress. 
When the instruction reallocates a register, the original 
register that was allocated to this instruction at the time of 
renaming is added to the free list immediately after the re-
broadcast of the new register tag across the issue queue. 
Thus, the subsequent reassignment of the freed register 
does not create any problems and any special considerations 
for allocating a register. 

 
4.2 Datapath Changes 
 

The obvious additions to the datapath include the free 
list management logic as well as the sign extension and byte 
multiplexing logic as described earlier. We also need to 
augment the issue queue (IQ) logic and the tag buses to 
permit dependent instructions in the IQ to be notified of the 
reallocation of the destination register as follows. 

First, the source register fields of the IQ entries are 
widened to include the parts bit-mask (Section 3.2). If the r-
bit physical register addresses are used and if we use the 
same 64-bit datapath example, this drives up the width of 
the source field entries from r to r+4. At the time of 
dispatch, the parts bits are initialized along with the register 
address in the source specifier fields.  

Second, the tag bus is widened to support the broadcast 
of the new register specification (register address plus 4 
parts bits), along with the address of the original register 
plus an additional line (normal/update) that indicates if it is 
a normal broadcast or a broadcast for updating source 
addresses in matching IQ entries on a reallocation.  Thus, if 
we have a r-bit physical register address, the width of the 
tag bus line goes up from r to 2*r+5 (2*r is due to the fact 
that both the old address and the new address have to be re-
broadcasted in the course of tag updates). This, as explained 
below, does not widen the comparators used within the IQ 
entries: the comparators still monitor only the original r-bit 
lines. For a normal broadcast used to wake up dependent 
instructions in the issue queue, the physical register address 
of the originally allocated full-width register is broadcasted 
on the originally present r-bit bus lines and the 
normal/update line is driven to a value corresponding to 
normal. The IQ comparators behave exactly as they do in 
the original design for this value on the normal/update line.  
For an update, the normal/update line is driven to a value 
corresponding to update, the physical register and the new 
register address specification are driven on the bus lines.  
IQ entries matching the original source address simply 
update the source address fields, overwriting the original 
physical register and parts bits. This requires the latches 
holding the source address within the IQ entries to be of a 
master-slave type. 



 

 

Note also that the increase in the width of the wakeup 
bus can be limited by using a pair of existing tag buses to 
broadcast the old and the new addresses in the course of 
update broadcasts. However, as the update broadcasts 
(which actually require two sets of buses) are frequent in 
Conservative Packing, this can result in significant 
competition for the existing buses and lead to performance 
degradation. We evaluate some of these tradeoffs in the 
results section later in the paper. 

 
4.3 Number of Tag Buses and Logic Details 

 
Up to a maximum of two tag broadcasts are needed for 

every result produced that has a register as a destination: 
one for the wakeup and one for broadcasting the necessary 
updates on a reallocation.  In theory, one thus needs to have 
two sets of tag buses. In reality, the tag buses are 
underutilized [42].  In a normal M-way superscalar machine 
that dispatches up to M instructions per cycle, up to M tag 
buses are needed to maintain the full throughput.  However, 
not all of these tag buses are utilized because the IPCs are 
typically much lower than M and some instructions, such as 
stores and branches, do not have to broadcast their 
destination tags simply because these instructions have no 
destination. One can thus use the existing set of M tag buses 
to support the wakeup broadcast and the update broadcast 
without any performance penalty. In fact, as we show in the 
results section, increasing the number of tag buses is 
unnecessary, at least when width prediction is in use. 

 

 
Figure 4 – Writeback Logic Details 

Some additional explanations are also due on the 
concurrent steps of the writeback stage and the concurrent 
steps executed in the cycle after writeback. Figure 4 depicts 
the logic necessary to implement these steps. As the result 
and the originally-assigned slot address are driven over a 
shared bypass bus, the width estimation logic estimates the 
required slot width for the result. If the result requires only 
a portion of the register, this logic disables the register file 
write in the current (i.e.,the writeback) cycle. We estimate 
that the bus delays permits the write disable control to hold 
off the register file write before it actually commences.  

Simultaneously, the width estimation logic invokes the 
allocator to make a new allocation (register + parts) for the 
result. The core of the width estimation logic consists of 
four parallel arrays of NAND gates that combine the full-
width result produced by the FU against four byte masks to 
determine the number of significant bytes needed to hold 
the result. As shown in Figure 4, the new slot address 
needed for a write into the register file as well as for the 
required broadcast for the tag updates in the next cycle, is 
saved in a latch. The sign padding adjustment needed to 
remove extraneous significant bits in the result for this 
write is part of the RF write control logic. 

 
5. Speculative Packing with Width Prediction 

 
As indicated in Section 2, the number of significant bits 

in the result produced by an instruction that targets a 
register is highly predictable. Speculative Packing exploits 
this fact to perform a register allocation based on the 
predicted width in advance and improve on Conservative 
Packing in a number of ways. 

 
5.1 Main Differences with Conservative Packing 
 

In Speculative Packing, width predictions are 
implemented through the addition of 2 bits for the I-cache 
entry of each instruction. If an instruction is decoded to be 
one that produces a result into a register, the two associated 
bits fetched from the I-cache along with the instruction 
indicates the predicted class of the result as one of C1, C2, 
C3 and C4 (for the 64-bit datapath used as an example). The 
addition of two bits to the fields for each of the instructions 
in a cache line may require modifications to the optimized 
design of the cache data array RAM macros, as writes to 
these bits can take place from the logic that detects the 
actual result width. An alternative and one that is more 
desirable, is to use a separate, independent array of 
prediction bits common to all of the cache ways. For an S-
way instruction cache that has Q instructions per line, this 
implies that this array of predictions bits will have 2*S*Q 
bits in each row. The identity of the way providing the 
instruction line on an I-cache hit can be used to extract the 
relevant prediction bits from the row that was read out 
using the set index. The default prediction used for the 
width is that the result is predicted to be a full-width 
instruction. This prediction is revised when the result is 
actually computed. Of course, alternative prediction 
schemes, using prediction tables outside of the I-cache, can 
also be used, as in [31]. The complete evaluation of these 
techniques is beyond the scope of this paper.  

One can also avoid using width predictors and instead 
rely on the explicit width specifications typically provided 
by the ISA. For example in the Alpha ISA, the instruction 
opcodes can be easily used to distinguish between 32-bit 



 

 

and 64-bit instructions (i.e. addq vs. addl, ldq vs. ldl, etc.) 
However, such information can only distinguish two result 
classes. The use of the width predictor allows for the 
differentiation among several width classes at any level of 
granularity.   

The main difference of Speculative Packing from 
Conservative Packing stems from the fact that a destination 
register is allocated based on the predicted length of the 
result at the time of renaming the instruction. The 
modifications to the instruction renaming/dispatch stage 
activities are as follows: 
• Use the predicted result class to allocate a destination 

register 
• Record the specifier consisting of a physical register 

address and a parts bit mask for this destination in the 
rename table and within the ROB entry for the instruction 
Instruction dispatch stalls if an allocation is not possible 

(as in the base case design). The tag broadcast for the 
wakeup of dependent instructions in the IQ now uses a 
physical register address as well as the parts bits for the 
register allocated based on the prediction. This implies, 
following the notation used earlier that each tag bus has 2*r 
+ 9 lines. 

When a result has been calculated, the writeback stage 
implements the following steps in parallel: 
• If the predicted width is higher than the width of the 

allocated result repository, an update broadcast, as in 
Conservative Packing, is performed to update the parts 
field of dependent instructions. Additionally, if the 
corresponding architectural register was not renamed, the 
rename table entry for the destinations is updated with the 
new value of the parts bits. Simultaneously, the unused 
portion is deallocated, as described in Section 3.2. A 
possible alternative to this step will be to do nothing and 
simply waste the unused byte fields. This, of course, 
requires the result to be sign extended to the allocated 
length before it is written into the register file. 

• If the predicted width is smaller than that of the computed 
result, an allocation attempt is made to find a result 
repository of the correct width. If this allocation is 
successful, an update broadcast and a possible rename 
table update is performed as described in the last step. If 
the allocation fails, then we have the potential for a 
deadlock. 
Deadlocking can occur in the scenario described above if 

the failure to allocate a repository for the result holds up 
instruction commitment and the release of free space in the 
register file. This situation is analogous to what is 
encountered in a scheme where register allocations are 
delayed till the result is generated [7, 19, 33]. However, the 
important difference is that in register packing, the situation 
leading to a potential deadlock can occur only on a rare 
occasion of a width misprediction when no appropriately 
sized physical register part is available in the free lists. 

Since the deadlocks occur very infrequently in our scheme, 
sophisticated deadlock management mechanisms are not 
required and simple techniques works very well as we 
detail later in the paper. 

The logic necessary for handling the tag updates in 
Speculative Packing is very similar to the logic described in 
Section 4.3, Figure 4. The width estimation logic of Figure 
4 is augmented to simply detect a width misprediction of a 
more general nature (The original logic of Figure 4 simply 
detected if the result was not full-width). As in the case of 
Conservative Packing, the FUs simply supply a full-width 
result.  The writing of the significant parts into the assigned 
register is part of the RF write logic. Width mispredictions 
are detected by comparing the number of 16-bit slots in the 
original allocation against the number of 16-bit slots 
actually required by the generated result.  

 
5.2 Avoiding Deadlocks 

 
Several possible solutions exist for avoiding the possible 

deadlocks when an instruction whose result width was 
mispredicted cannot obtain an appropriately sized physical 
register part from the free lists.   

Flush Younger Instructions (FYI): The simplest 
possible scheme for avoiding a deadlock as described 
earlier is to flush all instructions prior to the one for which a 
repository allocation on a width misprediction failed. 
Instruction execution resumes with the dispatch of the 
instruction for which the misprediction occurred, assuming 
that the result is a full-width one (for simplicity). One can, 
of course, remember the actual width and use that as the 
width predicted on restarting. This solution will not have a 
large performance penalty as long as the prediction rate is 
very high, which is indeed the case. 

Steal From Younger (SFY): A potentially more 
efficient solution, but one that is clearly more complicated, 
is to locate the most recently dispatched instruction, say I, 
that was allocated a repository of the required width or a 
higher width and reassign all or part of this repository to the 
instruction whose width was under-predicted. All 
instructions following I are flushed from the pipeline and 
instruction dispatch resumes from instruction I. This, in 
some sense, is similar to “stealing from the younger” 
scheme described in [33] in the context of handling 
deadlocks with late register allocation. 

Other solutions of varying complexity are possible, 
including a variation of the last one, where a minimum 
number of full-width registers are kept reserved for 
allocations on a width under-prediction, resorting to SFY 
only when the number of free reserved registers drops to 
zero. As shown in the results section, none of these 
complications are necessary and SFY does not provide any 
noticeable performance benefits compared to FYI, mainly 
because the actions involved in either solution are 
performed very infrequently, as in most cases the 



 

 

appropriately sized register part is available on a width 
misprediction. 

 
5.3 Main Benefits 

 
Speculative Packing makes two expected improvements 

over Conservative Packing. These are as follows: 
In Conservative Packing, an update broadcast is always 

needed when the result falls into the classes C1 through C3 
(Another way of looking at Conservative Packing is to 
think of it as a variation of Speculative Packing, with a 
prediction that the result is in class C4). In Speculative 
Packing, the update broadcast is mandated whenever a 
result’s width is unpredicted (An update broadcast can be 
avoided in Speculative Packing on width-overpredictions).  
Thus, assuming the width distributions as given earlier, and 
the high likelihood of predicting a result’s width, 
significantly fewer update broadcasts are required in 
Speculative Packing. 

Conservative Packing locks up a full width register 
allocated to an instruction till at least the width of the result 
is known. Speculative Packing, on the other hand, allocates 
register portions based on the predicted width. Again, given 
a high width prediction ratio and the distributions of the 
data widths, Speculative Packing keeps more register 
portions available than Conservative Packing. 

Table 1. Configuration of the Simulated Processor 
 
6. Simulation Methodology 
 

Our simulation environment was developed from scratch 
in C++, and includes a detailed cycle-accurate pipeline 
simulator (our code is rooted in the Simplescalar simulator 
[1], but has very little resemblance to it in the final version). 
To target programs, this environment exactly replicates 
Linux 2.6 on an Alpha 21264 at the system call and ISA 
level. All benchmarks were compiled with gcc 3.3.3 for the 
Alpha 21264 instruction set (compiler options: -O99 -

funroll-loops -mcpu=ev67 -mtune=ev67 -mfix -mcix -
mbwx -mfloat-ieee-fno-trapping-math). These options 
deliver the maximum possible optimization the compiler is 
capable of. The programs were then linked with the stock 
Linux glibc 2.3.3 for Alpha, compiled with the same 
options. For this study, we use 17 SPEC 2000 benchmarks; 
we had difficulty compiling the other benchmarks in our 
environment, mainly those that are written in Fortran 90 or 
C++. The results from the simulation of the first 1 billion 
instructions were discarded and the results from the 
execution of following 200 million instructions were used. 
Reference inputs were used for all simulated benchmarks. 
Table 1 shows the processor configuration used.  

 
7. Experimental Results 
 
7.1 Evaluation of Conservative Packing 
 

We first evaluate the performance of Conservative 
Packing. Figure 5 shows the commit IPCs for 4 different 
situations. The leftmost bar shows the IPC of a 4-way 
baseline machine as defined in Section 6. The next bar 
depicts the performance of Conservative Packing where 8 
tag buses are used. Since we simulated a 4-way machine, 8 
tag buses are always sufficient to avoid any collisions 
between the regular tag broadcasts and the tag re-broadcasts 
performed during the re-assignment of registers. In this 
case, 4 of these tag buses are essentially reserved for tag 
rebroadcasts and have to be wider than the normal tag 
buses. Compared to the baseline case, the performance is 
increased by more than 14% on the average across the 
benchmarks, ranging from 40% (art) to 1% (ammp). Such a 
low performance increase in ammp is not surprising since 
ammp’s performance is predominantly constrained by a 
large number of D-cache misses, diminishing any gains due 
to the register file optimizations.  

The next bar shows the performance of the system where 
both the tag re-broadcasts and the regular tag broadcasts 
share the same 4 tag buses. In this case, the priority is 
always given to the tag re-broadcasts and the selection of 
the instructions which are not able to obtain the access to 
the tag bus for the regular tag broadcast are delayed. One 
can see a fairly drastic performance degradation compared 
to the case where the number of tag buses is unrestricted. 
On the average, performance loss is 8% compared to the 
configuration with 8 tag buses. Compared to the baseline 
case, there is still 6% performance improvement on the 
average. It should also be noted that some of the 
benchmarks (bzip2, gcc, parser, ammp) exhibit worse 
performance than even the baseline case. This is obviously 
a consequence of the fact that delaying the execution of 
some instructions, even by one cycle, is very critical to the 
performance of these benchmarks.  

The rightmost bar of Figure 5 shows the performance of 
Conservative Packing when all tag re-broadcasts are 

Parameter Configuration 
Machine width 4-wide fetch, 4-wide issue, 4 wide commit 
Window size 

 
64 entry issue queue, 64 entry load/store queue, 

128–entry ROB 
Function Units 

and Latency 
(total/issue) 

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2 
Load/Store (2/1), 2 FP Add (2), 1FP Mult (4/1) 

/ Div (12/12) / Sqrt (24/24) 
L1 I–cache 

 
32 KB, 2–way set–associative, 64 byte line, 1 

cycles hit time 
L1 D–cache 

 
64 KB, 4–way set–associative, 64 byte line, 2 

cycles hit time 
L2 Cache 

unified 
2 MB , 8–way set–associative, 128 byte line, 6 

cycles hit time 
BTB 4K entry, 2–way set–associative 

Branch 
Predictor 

Combined with 1K entry Gshare, 8 bit global 
history, 4K entry bimodal, 1K entry selector 

Memory 256 bit wide, 80 cycles first part, 1 cycle 
interpart 

TLB 
32 entry (I) – 2-way set-associative, 128 entry 
(D) – 16-way set associative,  12 cycles miss 

latency 



 

 

handled within a single cycle and the rest of the pipeline is 
stalled during that cycle. Such an arrangement avoids 
complications associated with arbitrating for the tag buses 
between the re-broadcasts and the regular tag broadcasts. 
Unfortunately, this results in an average performance 
degradation of 27% compared to the base case, and is 
therefore not an attractive option. Such a large performance 
drop is expected, as the number of the tag re-broadcasts in 
Conservative Packing is very significant. The reduction of 
the number of the tag re-broadcasts is exactly what has 
motivated Speculative Packing, where totally different 
trade-offs occur, as we detail in the next subsection.  

0

0.5

1

1.5

2

2.5

3

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T 

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

Base 8  tag buses 4 tag buses 1 cycle stall on tag re-broadcasts  
Figure 5 – Performance of Conservative Packing 

 
7.2 Evaluation of Speculative Packing 

 
Figure 6 shows the performance of Speculative Packing 

for the configurations detailed in the previous subsection 
(base case, 8 tag buses, 4 tag buses and 1 cycle stall on the 
tag re-broadcasts). In all cases, we assumed that on a width 
misprediction and the subsequent failure to allocate a 
required register partition (because of the absence of such 
in the free lists) all instructions following the mispredicted 
instruction (and including that instruction itself) are flushed 
and the fetching restarts from the mispredicted instruction 
using the actually computed result width as a prediction 
(which will always be correct). While it may seem that 
handling potential deadlocks in such a fashion could result 
in a significant performance loss, this is not the case 
because the prediction accuracy is high. Later in this 
subsection, we also evaluate alternative mechanisms for 
avoiding deadlocks. 

For the case where 8 tag buses are used, the performance 
is increased by more than 16% on the average across the 
benchmarks, ranging from 46% (art) to 4% (ammp) 
compared to the baseline case. When 4 tag buses are shared 
among the tag re-broadcasts and the regular tag broadcasts, 
the average performance is still 15.5% higher than in the 
baseline case. One can see that in Speculative Packing, 
there is little difference between using 8 tag buses and 
sharing 4 tag buses. Again, this is a consequence of the high 
width prediction accuracy, representing a marked difference 

from what we observed in Conservative Packing. Even 
when the pipeline is stalled for 1 cycle during the tag re-
broadcasts, the performance of Speculative Packing does 
not significantly degrade – it is still 10% higher than the 
performance of the base case on the average, although some 
benchmarks (mcf, parser, ammp, equake) exhibit a slight 
performance degradation. Unsurprisingly, these are the 
benchmarks (except ammp, which is dominated by D-cache 
misses) which have relatively lower width prediction 
accuracy (Figure 2).  
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Figure 6 – Performance of Speculative Packing 
Figure 7 presents a comparison of two deadlock 

avoidance schemes (FYI and SFY, Section 5.2). The first 
scheme flushes all the instructions following the 
mispredicted instruction while the second scheme tries to 
find a younger instruction to which an appropriately sized 
physical register part was allocated. That part is then 
“stolen” from that younger instruction and only the 
instructions that follow the younger instruction are 
replayed. As seen from the figure, there is virtually no 
performance difference between the two schemes. The 
average IPC difference is only 0.3% (with a maximum of 
1.9% for swim). At first glance, this result seems to be 
counterintuitive. To understand why this is indeed the case, 
we need to closely examine the actions that transpire after a 
width misprediction and a subsequent failure to allocate a 
required register repository, and analyze the associated 
penalties.  

These penalties come from two sources. First, a precise 
processor state (in particular, the state of the rename table) 
has to be reconstructed and, second, the instructions 
following the mispredicted instruction, or the instruction 
from which a register was stolen, have to be re-fetched and 
re-executed. We assume that the shadow copies of the 
rename table are created at every branch, thus to reconstruct 
a precise state of the rename table, all we need to do is to 
apply the modifications performed by the instructions 
between the mispredicted instruction (or the instruction 
from which the register was stolen) and the most recent 
preceding branch to the shadow copy of the rename table 
created for that branch. Obviously, the latency of this 
operation only depends on the distance between the 



 

 

instruction in question and the prior branch. Whether the 
instruction in question is a mispredicted instruction itself or 
a younger instruction from which a register was stolen does 
not impact this latency. We actually verified in our 
simulations that this latency is about the same in both cases, 
as one would expect. Therefore, the only difference 
between the two schemes comes from potentially replaying 
a smaller number of instructions if stealing from the 
younger is used. However, as the number of times that such 
replays are needed is very small, there is almost no impact 
on the IPCs. For these reasons, the additional complexities 
involved in implementing SFY are not justified to support 
register packing.  
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Figure 7 – Comparison of Deadlock Avoidance 

Techniques 
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Figure 8 – Percentage of Width Mispredictions 

when Required Physical Register Part cannot be 
found in the Free Lists 

Figure 8 shows the actual percentage of width 
mispredictions when required physical register part cannot 
be found in the free lists. This percentage is below 3.5% for 
all benchmarks with the exception of art and swim. Coupled 
with the high prediction accuracy, results of Figure 8 can be 
used to explain why the possibility of a deadlock is 
miniscule in our schemes and why there is almost no 
difference in the bars presented in Figure 7. The only two 
benchmarks that have a higher percentage of cases when a 
width misprediction could result in a deadlock are art and 
swim. For swim, the width prediction accuracy is relatively 

lower (about 90%) so there is some difference in the bars of 
Figure 7 for swim. On the contrary, the width prediction 
accuracy for art is more than 97%, so despite the relatively 
high percentage of cases where a register cannot be found 
in the free lists, the resulting impact of the deadlock 
avoidance mechanisms on the IPC is almost negligible.  
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Figure 9 – Comparison of Register Packing and 

Doubling the Number of Physical Registers 
Finally, Figure 9 presents the comparison between using 

register packing (we assumed Speculative Packing where 4 
tag buses are shared) and simply doubling the number of 
physical registers in the base case. The leftmost bar shows 
the performance of the baseline case with 64 integer and 64 
floating point registers. The middle bar shows the 
performance of register packing with 64 integer and 64 
floating point registers when Speculative Packing is used. 
Finally the rightmost bar shows the performance of a 
baseline machine with 128 integer and 128 floating point 
registers. For integer benchmarks, the performance of 
register packing comes to within 0.8% of the performance 
of the baseline case with 128 integer and 128 floating point 
registers. For floating point benchmarks, the performance 
difference between register packing and the baseline case 
with 128 registers is about 10%. In fact, for FP benchmarks, 
register packing realizes slightly more than half of the 
speedup achieved by simply doubling the number of 
registers. This is primarily due to the benchmarks where a 
high percentage of generated values are double precision 
floating point values requiring full 64 bit registers to store 
them (applu, apsi, mgrid, refer to Figure 1 for details). On 
the average across all benchmarks, doubling the number of 
registers increases the IPC of the baseline case by about 
22%, while the use of register packing increases the IPCs 
by 16%. In other words, register packing realizes 73% of 
the maximum performance improvement achievable by 
doubling the number of registers, with 94% for the integer 
benchmarks and 56% for the floating point benchmarks. 
The performance difference between the baseline case with 
128 registers and register packing with 64 registers is about 
6% on the average across all benchmarks, 0.8% for the 
integer benchmarks and 13% for the floating point 
benchmarks. 



 

 

 
8. Related Work 

 
Researchers have exploited the inefficiencies in register 

usage to reduce the number of registers in three major 
ways.  One set of solutions delays the actual allocation of 
physical registers until the time that the result is written 
back [19, 7, 33].  Delayed physical register allocation was 
also used in [17] to reduce the conflicts over the write ports 
in a multiple-banked register file. The second set of 
techniques aim at reducing the register file pressure by 
using the early deallocation of physical registers [14, 15, 
16, 24, 41, 45]. In [46], a combination of early deallocation 
and late allocation was used to completely avoid register 
allocation for a large number of instructions. The third set 
of solutions reduces the number of registers through the use 
of register sharing [4, 11, 18].     

Replicated [12] and distributed [21, 22] register files in a 
clustered organization have been used to reduce the number 
of ports in each partition and also to reduce delays in the 
connections in-between a function unit group and its 
associated register file. Alternative register file 
organizations (mainly using various forms of caching) have 
also been explored for reducing the access time (which goes 
up with the number of ports and registers), particularly in 
wire-delay dominated circuits [5, 3, 2, 26].  In [25], register 
file usage was optimized using compiler support to exploit 
dead value information. Asymmetrically ported register file 
was proposed in [43]. 

Techniques based on the value range analysis were 
extensively used in high-level code transformations [35, 36, 
37]. In [28], the information about the operand sizes was 
used to rewrite the source code such that each data type has 
an associated width component. Several techniques were 
also proposed to directly exploit the fact that many 
operands and results in a datapath have narrow width. Most 
of these techniques propose optimizations for power 
efficiency [28, 29, 30]. In [28], a scheme for encoding 
significant zeros is exploited and investigated for power 
reduction in scalar pipelines. In [29], the presence of zero 
bytes was exploited for reducing the cache energy 
consumption. A software-controlled operand gating is 
proposed in [30], where the ISA is extended to include the 
opcodes that specify operand widths. In [39, 40], narrow 
width operands were exploited to reduce the power 
requirements of a value predictor. 

Several researchers proposed compiler optimizations and 
architectural techniques to exploit the narrow-width 
operands for performance by packing multiple operations 
together to execute on the same FU. In [27], Brooks et.al. 
proposed a technique to detect the widths of the instructions 
to be executed and pack them so that they can be executed 
at the same time using the wide ALU. Similar mechanism 
was proposed in [31], but instead of detecting the data 
width deterministically before scheduling, the width is 

predicted. [32] proposed a similar approach for a VLIW-
style machine. Compiler support to synthesize SIMD 
instructions from basic block statements was proposed in 
[34]. While these techniques exploit the narrow operands 
(and in some cases use the width prediction) for packing 
multiple operations on the ALU, we use the same 
motivations for packing multiple results within a common 
physical register. Our schemes can be very well used in 
conjunction with the techniques of [27] and [31]. 

In [24] Lipasti et al introduced a technique for reducing 
register file pressure that exploits significance compression 
[28].  In their technique, narrow width results are stored in 
the rename table entry itself. The work of [24] and this 
work offer two distinct solutions for exploiting narrow 
width operands for easing the register pressure. 

A compiler based solution for packing multiple sub-
word values into a single register in embedded processors 
was proposed in [44]. 

 
9. Concluding Remarks 

 
We proposed microarchitectural techniques to pack 

multiple narrow-width results into a common physical 
register. Our first scheme, a conservative technique, 
allocates a full-sized physical register for every dispatched 
instruction and later reassigns a smaller-width register 
partition to this instruction, if the result turns out to be 
narrow-width. The drawback of this scheme is in the need 
to frequently re-broadcast the destination register tags when 
register reassignments are performed. Our second 
technique, a predictive scheme, avoids this complication by 
predicting the result width at the time of instruction 
renaming and allocating just the right register partition to 
hold the result. On a rare occasion of width mispredictions, 
the same tag buses used for the regular tag broadcast can be 
also employed to re-broadcast the new register tags to the 
dependent instructions still waiting in the instruction queue.  

For a 4-way processor with 64 integer and 64 floating 
point registers, the predictive scheme with the tag bus 
sharing achieves 15% average IPC improvement across 
simulated Spec 2000 benchmarks. This gain is achieved 
with reasonable additional datapath complexities and 
without any increase in the number of tag buses.  

 
10. Acknowledgements 

 
We thank Matt Yourst for his help in developing the 
simulation environment. We would also like to thank 
Aneesh Aggarwal, Matt Yourst, Joseph Sharkey and the 
anonymous reviewers for their valuable comments on this 
paper. This work was supported in part by DARPA through 
contract number FC 306020020525 under the PAC-C 
program, the NSF through award No.  EIA 9911099. 
 



 

 

11. References 
 
[1] Burger, D. and Austin, T. M., "The SimpleScalar tool set: 

Version 2.0", Tech. Report, Dept. of CS, Univ. of Wisconsin-
Madison, June 1997 and documentation for all Simplescalar 
releases (through version 3.0). 

[2] Balasubramonian, R., Dwarkadas, S., Albonesi, D., 
"Reducing the Complexity of the Register File in Dynamic 
Superscalar Processor", in Proc. of MICRO-34, 2001. 

[3] Borch, E., Tune, E., Manne, S., Emer, J., "Loose Loops Sink 
Chips", in Proc. of HPCA, 2002. 

[4] Balakrishnan, S., Sohi, G., “Exploiting Value Locality in 
Physical Register Files”, in Proc. of MICRO-36, 2003. 

[5] Cruz, J-L. et. al., "Multiple-Banked Register File 
Architecture", in Proc. of ISCA-27, 2000. 

[6] Franklin, M., Sohi, G., "Register Traffic Analysis for 
Streamlining Inter-Operation Communication in Fine-Grain 
Parallel Processors", in Proc. of MICRO-25, 1992. 

[7] Gonzalez, A., Gonzalez, J., Valero, M., “Virtual-Physical 
Registers”, in Proc. of HPCA-4, 1998. 

[8] Hu, Z. and Martonosi, M., "Reducing Register File Power 
Consumption by Exploiting Value Lifetime Characteristics", 
in Workshop on Complexity-Effective Design (WCED), 2000. 

[9] Hinton, G., et.al., “The Microarchitecture of the Pentium 4 
Processor", Intel Technology Journal, Q1, 2001. 

[10] Jaleel A. and Jacob B. "In-line interrupt handling for 
software-managed TLBs." in Proc. of ICCD-19, 2001. 

[11] Jourdan, S., Ronen, R., Bekerman, M., Shomar, B. and Yoaz, 
A., “A Novel Renaming Scheme to Exploit Value Temporal 
Locality through Physical Register Reuse and Unification”, 
in Proc. of MICRO-31, 1998. 

[12] Kessler, R.E., "The Alpha 21264 Microprocessor", in Micro, 
19(2), 1999. 

[13] Kim, N., Mudge, T., "Reducing Register Ports Using Delayed 
Write-Back Queues and Operand Pre-Fetch", in ICS, 2003. 

[14] Martinez, J., Renau, J., Huang, M., Prvulovich, M., Torrellas, 
J., "Cherry: Checkpointed Early Resource Recycling in Out-
of-order Microprocessors", in Proc. of MICRO-35, 2002. 

[15] Moudgill, M., Pingali, K., Vassiliadis, S., "Register 
Renaming and Dynamic Speculation: An Alternative 
Approach", in Proc. of MICRO-26, 1993. 

[16] Monreal, T., Vinals, V., Gonzalez, A., Valero, M. “Hardware 
Schemes for Early Register Release”, in ICPP-02, 2002. 

[17] Park, I., Powell, M., Vijaykumar, T., "Reducing Register 
Ports for Higher Speed and Lower Energy", in MICRO, 2002. 

[18] Tran, N., et.al., “Dynamically Reducing Pressure on the 
Physical Register File through Simple Register Sharing”, in 
Proc. of  ISPASS-2004, 2004. 

[19] Wallase, S., Bagherzadeh, N., "A Scalable Register File 
Architecture for Dynamically Scheduled Processors", in 
Proc. of PACT-5, 1996. 

[20] Yeager, K., “The MIPS R10000 Superscalar 
Microprocessor", IEEE Micro, Vol. 16, No 2, April, 1996. 

[21] Canal, R., Parserisa, J.M., Gonzalez, A., “Dynamic Cluster 
Assignment Mechanisms”, in Proc. of HPCA-6, 2000. 

[22] Farkas, K., Chow, P., Jouppi, N., Vranesic, Z., “The 
Multicluster Architecture: Reducing Cycle Time Through 
Partitioning”, in Proc. of  MICRO-30, 1997. 

[23] Azevedo, A., et.al., “Profile-based Dynamic Voltage 
Scheduling using Program Checkpoints in COPPER 
Framework”, in Proceedings of DATE, 2002. 

[24] Lipasti, M., et.al., “Physical Register Inlining”, in Proc. of 
ISCA, 2004. 

[25] Martin, M., Roth, A., Fischer, C., “Exploiting Dead Value 
Information”, in Proc. Of MICRO-30, 1997. 

[26] Butts, A., Sohi, G., “Use-Based Register Caching with 
Decoupled Indexing”, in Proc. of ISCA, 2004. 

[27] Brooks, D. and Martonosi, M., “Dynamically Exploiting 
Narrow Width Operands to Improve Processor Power and 
Performance", in Proc. of HPCA, 1999. 

[28] Canal R., Gonzales A., and Smith J., “Very Low Power 
Pipelines using Significance Compression", in Proc. of 
MICRO-33, 2000. 

[29] Villa, L., Zhang, M. and Asanovic, K., “Dynamic Zero 
Compression for Cache Energy Reduction", in MICO 2000. 

[30] Canal, R., Gonzalez, A., Smith, J., “Software-Controlled 
Operand Gating”, in Proc. of the Intl. Symp. On Code 
Generation and Optimization, 2004. 

[31] Loh, G., “Exploiting Data-Width Locality to Increase 
Superscalar Execution Bandwidth”, in MICRO-35, 2002. 

[32] Nakra, T., et.al., “Width Sensitive Scheduling for Resource 
Constrained VLIW Processors”, Workshop on Feedback 
Directed and Dynamic Optimizations, 2001. 

[33] Monreal, T., et.al., “Delaying Physical Register Allocation 
Through Virtual Physical Registers”, in Proc. of MICRO-34 
1999. 

[34] Larsen, S., Amarasinghe, S., “Exploiting Superword Level 
Parallelism with Multimedia Instruction Sets”, in Proc. of the 
Conferenc on Programming Language Design and 
Implementation, 2000. 

[35] Budiu, M., et.al., “BitValue inference: Detecting and 
Exploiting  Narrow Bitwidth Computations”, in Proceedings 
of EuroPar 2000. 

[36] Patterson, J., “Accurate Static Branch Prediction by Value 
Range Propagation”, in Proc. of PLDI, 1995. 

[37] Stephenson, M., et.al., “Bitwidth Analysis with Application 
to Silicon Compilation”, in Proc. of PLDI, 2001.  

[38] Cao, Y., “A System-Level Energy Minimization Approach 
Using Datapath Width Optimization”, in Proc. of ISLPED, 
2001. 

[39] Sato, T., Arita, I., “Table Size Reduction for Data Value 
Predictors by Exploiting Narrow Width Values”, in Proc. of 
ICS, 2000. 

[40] Loh, G., “Width Prediction for Reducing Value Predictor 
Size and Power”, in the 1st Value Prediction Workshop (Held 
in conjuction with ISCA-30), 2003. 

[41] Ergin, O., Balkan,D., Ponomarev, D., Ghose, K., “Increasing 
Processor Performance Through Early Register Release”, in 
Proceedings of ICCD, 2004. 

[42] Aggarwal, A., Franklin, M., Ergin, O., “Defining Wakeup 
Width for Efficient Dynamic Scheduling”, in ICCD 2004. 

[43] Aggarwal A. and Franklin M., “Energy Efficient 
Asymmetrically Ported Register Files” in Proc. of ICCD-21. 
2003. 

[44] Tallam S. and Gupta R., “Bitwidth Aware Global Register 
Allocation”, In Proc. of  SIGPLAN-SIGACT, 2003. 

[45] Balkan D., Ergin O., Ponomarev D., Ghose K. “Selective 
Writeback: Improving Processor Performance and Energy 
Efficiency”, in Proc. of IBM p=ac2 conference, 2004. 

[46] Balkan D., Ponomarev D, Ghose K. “Predicting, Detecting 
and Exploiting Transient Values”, in the 2nd Value Prediction 
Workshop (held in conjunction with ASPLOS XI), 2004 


