

Register Packing:
Exploiting Narrow-Width Operands for Reducing Register File Pressure

Abstract

A large percentage of computed results have fewer
significant bits compared to the full width of a register. We
exploit this fact to pack multiple results into a single
physical register to reduce the pressure on the register file
in a superscalar processor. Two schemes for dynamically
packing multiple "narrow-width" results into partitions
within a single register are evaluated. The first scheme is
conservative and allocates a full-width register for a
computed result. If the computed result turns out to be
narrow, the result is reallocated to partitions within a
common register, freeing up the full-width register. The
second scheme allocates register partitions based on a
prediction of the width of the result and reallocates register
partitions when the actual result width is higher than what
was predicted. If the actual width is narrower than what
was predicted, allocated partitions are freed up. A detailed
evaluation of our schemes show that average IPC gains of
up to 15% can be realized across the SPEC 2000
benchmarks on a somewhat register-constrained datapath.

1. Introduction

Modern superscalar processors use sizable physical

register files to support large instruction windows for
exploiting available code parallelism. A free physical
register is allocated to hold a result of any new instruction
with a destination register. This register is deallocated only
when the next instruction writing to the same architectural
(logical) register commits. Such a conservative register
management guarantees that until all instructions between
the two consecutive definitions of the same architectural
register commit, the earlier definition is available and can
be resurrected should the later definition be squashed as a
result of a branch misprediction, an exception or an

__

* This work was done when Oguz Ergin was at the State University of
New York at Binghamton

interrupt. Many recent superscalar processors, such as the
Intel’s Pentium 4 [9], MIPS 10000 [20] and Alpha 21264
[12] implement the register files in this manner. While
significantly simplifying the recovery to a precise state, this
arrangement increases the register pressure and effectively
mandates the use of larger register files if pipeline stalls due
to the lack of physical registers are to be avoided.

The problem is exacerbated in processors that support
large instruction windows: the access time of the large
register file can force the use of a slower clock.
Additionally, as higher issue widths are used to support
large instruction windows, the number of read and write
ports on the register file increases commensurately, again
increasing the physical dimensions of the register file,
slowing it down further. As a result, physical register files
with a multi-cycle access time may become a necessity.
Consequently, complex multi-stage bypass networks may
be needed to avoid the performance degradation associated
with the “holes” in the availability of the instruction source
operands [5]. In addition, as the register file access stages
are within a branch misprediction loop [3], the performance
may degrade due to the increased branch misprediction
latency. Finally, large register files also dissipate more
power. The power dissipated in the register file can be
anywhere between 10% and 25% of the total chip power
[2], [23]. The situation is further exacerbated in the SMT
processors, where the pressure on the register file is
increased and larger physical register files are needed to
support multiple thread contexts.

An alternative to building large register files is to use
smaller number of registers, but manage them more
effectively. Researchers have generally exploited the
inefficiencies in register usage to reduce the number of
registers by using late register allocation [7, 19, 33], early
deallocation [14, 15, 16, 24] and register sharing [4, 11, 18].
In this paper, we propose alternative mechanisms for
reducing the register file pressure. Our techniques are based
on the observation that a large percentage of instructions
produce narrow-width results. Such operands/results require

Oguz Ergin*
Intel Barcelona Research Center

Intel Labs, UPC, Barcelona, Spain
oguzx.ergin@intel.com

Deniz Balkan, Kanad Ghose, Dmitry Ponomarev
Department of Computer Science

State University of New York, Binghamton, NY 13902-6000
e-mail:{dbalkan, ghose, dima }@cs.binghamton.edu

fewer than the maximum number of bits available in a
register for their storage. This situation can be exploited by
packing multiple narrow-width results into the same
register, thus reducing wastages in the register file and
resulting in higher register file utilization. Such
optimization can be especially attractive in the context of a
64-bit datapath, where 64-bit wide physical register files are
used and unless the produced result is a double-precision
floating point value (or, less frequently, a long integer
value), significant register wastages occur.

The main contributions of this paper are as follows:
• We propose register packing – a set of microarchitectural

techniques, both deterministic and predictive, to pack
multiple narrow-width register values into a common
physical register. Our technique results in 15%
performance improvement on the average across Spec
2000 benchmarks, for a processor with somewhat
register-constrained datapath configuration.

• We evaluate several register reassignment schemes and
also analyze several mechanisms for handling possible
width mispredictions and avoiding deadlocks.
The rest of the paper is organized as follows. We discuss

the distribution of the produced result widths and also study
the predictability of the result widths in Section 2. Section 3
describes the general considerations involved in packing of
multiple results into a common physical register. Our
techniques for reducing register pressure are described in
Sections 4 and 5. Our simulation methodology is described
in Section 6, followed by the simulation results in Section
7. We review the related work in Section 8 and offer our
concluding remarks in Section 9.

2. Motivations

It has been well documented in the recent literature that

many operand and result values in a datapath have narrow
width [27, 31, 24]. In this section, we analyze the data
width characteristics of the SPEC 2000 benchmarks that
were used in this work. We also study the physical register
file utilization based on the bit-occupancy of the individual
registers and finally explore the predictability of the result
widths using some additional bits in the I-cache.

First, we define a narrow-width value. The width of a
value is the position of the first zero (or one) bit, such that
all the bits in the more significant positions are also zeroes
(or ones). The value with a width smaller than the full width
of the datapath (32-bit or 64-bit typically) is then called a
narrow-width value. One can obviously define several
classes of narrow-width values – for example, those that
can be defined using 8 bits, 16 bits, 24 bits etc (more on this
in Section 3).

Figure 1 shows the width distribution of the generated
register values, both committed and speculative. On the
average, about 40% of all values can be represented using

just 16 bits. Obviously, if a full-sized 64-bit register would
be used to store each such result, significant inefficiencies
in the register file usage would occur. Another 45% of all
values can be represented using 32 bits. Only about 15% of
the generated values require 64-bit storage within the
register file to represent the result. Results shown in Figure
1 suggest that significantly better use of a register file is
possible if narrow width results can be packed within a
single 64-bit physical register. This observation has
motivated this work, as well as the works of [27, 31, 24].

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

Av
er

ag
e

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

16 bits 32 bits 48 bits 64 bits
Figure 1 – Width Distribution

The second observation that motivated this work is that
the widths of the produced results are highly predictable, as
was also noted in [31]. For this study, for each instruction
in the I-cache, we stored two additional bits signifying the
width of the result produced by this instruction during its
last dynamic instantiation. The 2 bits allow us to distinguish
4 possibilities: a) a result was less than 16 bit-wide, b)
result was between 16 and 32 bits-wide, c) result was
between 32 and 48 bits-wide and d) result was greater than
48 bits-wide. Figure 2 depicts the percentage of cases
(captured by the two bits kept in the I-cache) where a
dynamic instance of a static instruction generated a result
within the same width class as the previous dynamic
instance of the same static instruction. For each benchmark,
2 bars are presented. The left bar shows the percentage of
cases where a dynamic instance of a static instruction
generated a result exactly within the same width class as the
previous instance of the same static instruction whereas the
bar on the right shows the percentage of cases where a
generated result is either within the exact same width class
or has a larger width. This simple cache based last-width
class prediction achieves an average prediction accuracy of
94% when width overpredictions are treated as
mispredictions (left bar) and 98% when they are not (right
bar).

High predictability of data widths was also shown in
[31] where the data-width predictors similar to the load
value predictor and the bimodal saturating counter branch
predictor were evaluated. The prediction accuracies
presented in [31] are in line with the results of Figure 2.
The specific width predictor design is not the central part of

this paper, the important thing to notice is that the data
widths are highly predictable and this predictability can be
efficiently exploited using a variety of predictors.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

Prediction accuracy when counting the overpredictions as mispredictions
Prediction accuracy when counting the overpredictions as correct predictions

Figure 2 – Width Prediction Accuracy
In the next section, we formally define the width classes

and describe the general issues in maintaining multiple
results within a common physical register.

3. Packing Multiple Results into a Register

All results which are stored in physical registers are
grouped into several “width” classes, say C1, C2, .. Cn, with
associated bit widths w1, w2, .. wn. A result belongs to the
width class C1 if the number of significant bits in the result
is w1 or lower; otherwise it belongs to the class Ck, if the
number of significant bits of the result are within wk-1 + 1
and wk. Multiple results can be stored within a single
physical register of width D bits (D = 32 or 64 in
contemporary designs) as long as the sum of the widths
associated with the various classes of the stored results is
less than or equal to D. In theory, a more efficient use of the
physical registers is possible if a result class is associated
with each possible value of the width from 1 through N
(i.e., if n = N). However, such an organization grossly
complicates the management of free “slots” within physical
registers and also introduces delays in addressing a result
stored within a register as a combination of the physical
register address and specifiers for the size (or class) and the
location of the result within the physical register.

3.1 Operand Access and Partition Management

The addressing of a narrow-width result, along with

possibly other narrow results within a common physical
register, as well as the management of the free regions
within such registers, are considerably simplified if the
number of classes are limited. Further simplifications and
additional efficiencies result if the classes are integer
multiples of a single byte or of a half word. To see this,
consider a 64-bit physical register, i.e., D = 64 (We will use
the example of a 64-bit register throughout this section to

illustrate the basic concept behind our schemes; the
discussion can be extended to other widths as well.). The
result classes in this case of a 64-bit register are C1, C2, C3
and C4, which have the associated data widths of 16, 32, 48
and 64, respectively. This register can hold up to:
• 4 distinct results belonging to class C1
• 2 distinct results belonging to class C2
• 1 distinct result belonging to class C3 or C4
• 2 distinct results in class C1 and another in class C2
• 2 distinct results, one in class C1 and in class C3

Figure 3 –Data Steering Logic
For this 64-bit register, one can also use a 4-bit mask to

identify where a result is stored within a register. Bits in
this mask correspond to the four consecutive 16-bit fields
within the 64-bit register. The use of this mask bit to
specify the locations of the results is another advantage – it
is not necessary to use contiguous fields to hold parts of the
same result within a physical register. For example, the
fields used by a result belonging to class C2 (i.e., any result
with 17 to 32 significant bits) can be possibly indicated by
the following bitmasks:
• 1100, 0110, 0011 (results stored within two contiguous

16-bit parts)
• 1010, 1001, 0101 (results stored within non-contiguous

16-bit parts)
The ability to store a result within the non-contiguous

fields of a physical register improves the efficiency of using
the space within the register file. The use of the four classes
described above also simplifies the data steering circuitry
needed to access a register for a result and also simplifies
the sign extension logic that is needed to “expand” a
narrow-width operand to the full width before commencing
any operations on the data. A result is now addressed with a
combination of two entities: a physical register address and
a bit-mask (called parts) that identifies the part fields used
for storing the result.

Figure 3 depicts an example of the data steering logic
required for collecting results that can be stored in registers

4:1 sign
bit MUX* n-

devices

1 1 k 1 k 1 k k

k

k k k k

4k

2:1 MUX 3:1 MUX 4:1 MUX 4:1 MUX

Sense Amp Array

Bitcell Array
Partition 3 Partition 2 Partition 1 Partition 0

*includes 1 k expander

that have 4 partitions each. Each partition is k-bits wide.
The multiplexers in this logic are inserted on the bit lines
leading into the sense amp array from the bitcell array
implementing the registers. Such multiplexers can be
typically implemented using n-transistors (in a CMOS
implementation), as is routinely done in some RAMs that
isolate the bitlines for fast sensing or in RAM designs that
use column multiplexing. The logic of Figure 3 also
includes a sign bit extension facility, as shown, that copies
the sign bit into the most significant bit positions of narrow-
width results. The multiplexers are controlled using the
parts bit used to address a stored result (in conjunction with
a register address). The multiplexers are thus turned on
well before sensing is enabled. The propagation delay of
the data steering logic (the delay of 2 n-transistor pass
devices, at most) is almost absorbed by placing this logic
ahead of the sense amp array. The inclusion of this logic
grows the effective area of the register file slightly.

3.2 Managing Free Regions within a Register

We continue with the above example of a 64-bit

datapath that has 64-bit physical registers. At any time, four
free lists, FL1 through FL4, are used. FLk (k = 1, 2, 3 or 4)
lists all the physical registers that have exactly k 16-bit
parts of free space, not necessarily contiguous. Entries in
these free lists are thus specified by two entities: a physical
register address and a bit-mask (free_parts) that indicates
the locations of the free byte field(s). Note that free_parts
mask for entries in FL4 is unnecessary. Note also that a
physical register is listed only within a single free list.
Storage Allocation: If, at any time, a free space of n parts
is needed to store a narrow-width operand, the free list FLn
is searched. If an allocation is possible, that allocation is
made for the storage of the result. If, on the other hand, FLn
is empty, the requested storage is looked for in FLk, where
k > n. If there are multiple candidates for FLk, one can
either use a rotating fit, a best fit or a worst-fit algorithm to
determine the free list that would be used for the allocation
(we used the best fit algorithm throughout the rest of this
paper, where the first free list that is checked for
performing a new register allocation is the one that
corresponds to the size of the actually calculated result –
say FLk. On a failure to allocate a new register from this
list, the free list FLk+1 is checked and so on. Of course, to
insure that these activities can be performed within one
cycle, all these free lists can be searched in parallel). After
the allocation is performed, the free_parts field of the
register used for the allocation is updated and an entry is set
up in a possibly different list for the remaining portions of
the register. For example, consider the scenario, where FL1
is empty and the other free lists are non-empty. If register
space for a single part is needed, let’s assume that we use a
best-fit algorithm and use a register from FL2, say register
p, with a free_parts mask of 0101. To perform this

allocation, we remove this entry from FL2 and allocate the
last part field of p. A new entry is then made in FL1 with
the value (p, 0100).
Storage Deallocation: The process of deallocating the part
fields within a physical register has analogous, but
complementary steps. The challenge in this case is to
quickly locate the entry for the register, if any, and move it
to another free list after updating the free_parts mask bits.
This process can be facilitated if the free lists are kept
sorted by the physical register address. One can also
imagine alternative implementations of the lists and the
lookup, including the use of indirection entries or hash
addressing – such discussions are not central to this paper.
We believe that techniques exist for the fast lookup and
management of these free lists, with the described
allocation and deallocation semantics.

4. Conservative Packing

Our first approach towards dynamically packing
multiple results into a single register is very conservative in
nature and assigns a full-width register for the destination
register of an instruction at the time of register renaming.
Again, we use the example for the 64-bit physical registers.

4.1 Main Differences with the Conventional Design

Following the scheduling of the instruction producing a

register value, its dependent instructions in the issue queue
are awakened by the broadcast of the destination register id
as wakeup tag. When a result has been computed for the
instruction, the following steps are performed concurrently:
• The result is forwarded to dependent instructions in the

usual manner.
• The number of significant bits in the result (and thus the

class to which the result belongs) is determined.
• If the result requires all of the part fields in the allocated

physical register, no further actions are necessary and the
writeback to the register file proceeds normally.

• If the result requires fewer parts, an allocation is made
using the free lists FL3 through FL1, if possible. If an
allocation is not possible, the result is stored within the
required part fields of the originally allocated physical
register and the unused portion of that register is added to
the appropriate allocation list. The new allocation made
for the narrow-width result, be it from the originally
allocated full-width register or from a different physical
register (obtained from FL3 through FL1) is noted (i.e.,
saved in a latch). The result is also saved in a latch.
In the cycle following the writeback, if the result was

reallocated to a different register or a portion of the
originally allocated full-width register, the following steps
are performed concurrently:

• A special tag broadcast is made to notify the still-waiting
dependents of this instruction, if any, in the issue queue
that instead of the original physical register address they
were supposed to use to access this result, they have to
use the newly-assigned address. The issue queue logic
has to be modified to permit this update and such
modifications are described later. At the end of this
update, each issue queue entry would have the
information of what parts of which physical register have
to be read to supply the source operands for instruction
execution.

• The result is written into the newly allocated region of the
register file.

• The ROB entry of the instruction whose result was
moved to the newly-allocated register is updated to
reflect this update. This requires the addition of write
ports to only the part of the ROB that has the destination
information.

• The ROB entry of the instruction that will release the
reallocated register has to be updated to reflect the new
assignment (if the instruction has passed the rename
stage).

• If the destination architectural register was not renamed,
the rename table entry is also updated to reflect this new
allocation. An interlocking logic is needed to ensure that
instructions that are reading the rename table entry in the
cycle they are updated get the most recent value of the
entry.
When the rename table is fully checkpointed on

branches, the update to the rename table from the writeback
stage has to be propagated to all of the checkpointed copies
that map to the originally allocated physical register. As
noted in [24], such updates can be performed in the
background. If the rename table update performed at the
time of renaming the instruction’s destination saves the old
mapping in the ROB entry of the instruction, the update to
the rename table entry from the writeback stage on a
register reallocation can be performed in isolation, without
any need to update any other copies. Of course, in this latter
scheme, recovering from branch mispredictions requires
walking back the ROB entries serially. In our simulations,
we assumed that a full checkpoint of the rename table is
created on branches.

The steps described above basically permit out-of-order
execution to continue correctly when the destination
physical register is re-allocated to suit the width of the
result. Note also that this scheme does not suffer from any
deadlocking because of the lack of a register for the width-
based reallocation. Furthermore, the reallocation does not
tie up any new full-width registers for the dispatch. The
reallocation simply makes (further) use of an already-
allocated full-width register. The full-width registers that
are freed up as a result of the reallocation simply ease the
register file pressure and improve the IPC.

Note also that all dependent instructions that were issued
before the result was written back, pick up the result off of
the bypass network using the originally allocated (full-
width) physical register address; these instructions are
functionally unaffected by the reallocations in progress.
When the instruction reallocates a register, the original
register that was allocated to this instruction at the time of
renaming is added to the free list immediately after the re-
broadcast of the new register tag across the issue queue.
Thus, the subsequent reassignment of the freed register
does not create any problems and any special considerations
for allocating a register.

4.2 Datapath Changes

The obvious additions to the datapath include the free
list management logic as well as the sign extension and byte
multiplexing logic as described earlier. We also need to
augment the issue queue (IQ) logic and the tag buses to
permit dependent instructions in the IQ to be notified of the
reallocation of the destination register as follows.

First, the source register fields of the IQ entries are
widened to include the parts bit-mask (Section 3.2). If the r-
bit physical register addresses are used and if we use the
same 64-bit datapath example, this drives up the width of
the source field entries from r to r+4. At the time of
dispatch, the parts bits are initialized along with the register
address in the source specifier fields.

Second, the tag bus is widened to support the broadcast
of the new register specification (register address plus 4
parts bits), along with the address of the original register
plus an additional line (normal/update) that indicates if it is
a normal broadcast or a broadcast for updating source
addresses in matching IQ entries on a reallocation. Thus, if
we have a r-bit physical register address, the width of the
tag bus line goes up from r to 2*r+5 (2*r is due to the fact
that both the old address and the new address have to be re-
broadcasted in the course of tag updates). This, as explained
below, does not widen the comparators used within the IQ
entries: the comparators still monitor only the original r-bit
lines. For a normal broadcast used to wake up dependent
instructions in the issue queue, the physical register address
of the originally allocated full-width register is broadcasted
on the originally present r-bit bus lines and the
normal/update line is driven to a value corresponding to
normal. The IQ comparators behave exactly as they do in
the original design for this value on the normal/update line.
For an update, the normal/update line is driven to a value
corresponding to update, the physical register and the new
register address specification are driven on the bus lines.
IQ entries matching the original source address simply
update the source address fields, overwriting the original
physical register and parts bits. This requires the latches
holding the source address within the IQ entries to be of a
master-slave type.

Note also that the increase in the width of the wakeup
bus can be limited by using a pair of existing tag buses to
broadcast the old and the new addresses in the course of
update broadcasts. However, as the update broadcasts
(which actually require two sets of buses) are frequent in
Conservative Packing, this can result in significant
competition for the existing buses and lead to performance
degradation. We evaluate some of these tradeoffs in the
results section later in the paper.

4.3 Number of Tag Buses and Logic Details

Up to a maximum of two tag broadcasts are needed for

every result produced that has a register as a destination:
one for the wakeup and one for broadcasting the necessary
updates on a reallocation. In theory, one thus needs to have
two sets of tag buses. In reality, the tag buses are
underutilized [42]. In a normal M-way superscalar machine
that dispatches up to M instructions per cycle, up to M tag
buses are needed to maintain the full throughput. However,
not all of these tag buses are utilized because the IPCs are
typically much lower than M and some instructions, such as
stores and branches, do not have to broadcast their
destination tags simply because these instructions have no
destination. One can thus use the existing set of M tag buses
to support the wakeup broadcast and the update broadcast
without any performance penalty. In fact, as we show in the
results section, increasing the number of tag buses is
unnecessary, at least when width prediction is in use.

Figure 4 – Writeback Logic Details

Some additional explanations are also due on the
concurrent steps of the writeback stage and the concurrent
steps executed in the cycle after writeback. Figure 4 depicts
the logic necessary to implement these steps. As the result
and the originally-assigned slot address are driven over a
shared bypass bus, the width estimation logic estimates the
required slot width for the result. If the result requires only
a portion of the register, this logic disables the register file
write in the current (i.e.,the writeback) cycle. We estimate
that the bus delays permits the write disable control to hold
off the register file write before it actually commences.

Simultaneously, the width estimation logic invokes the
allocator to make a new allocation (register + parts) for the
result. The core of the width estimation logic consists of
four parallel arrays of NAND gates that combine the full-
width result produced by the FU against four byte masks to
determine the number of significant bytes needed to hold
the result. As shown in Figure 4, the new slot address
needed for a write into the register file as well as for the
required broadcast for the tag updates in the next cycle, is
saved in a latch. The sign padding adjustment needed to
remove extraneous significant bits in the result for this
write is part of the RF write control logic.

5. Speculative Packing with Width Prediction

As indicated in Section 2, the number of significant bits

in the result produced by an instruction that targets a
register is highly predictable. Speculative Packing exploits
this fact to perform a register allocation based on the
predicted width in advance and improve on Conservative
Packing in a number of ways.

5.1 Main Differences with Conservative Packing

In Speculative Packing, width predictions are
implemented through the addition of 2 bits for the I-cache
entry of each instruction. If an instruction is decoded to be
one that produces a result into a register, the two associated
bits fetched from the I-cache along with the instruction
indicates the predicted class of the result as one of C1, C2,
C3 and C4 (for the 64-bit datapath used as an example). The
addition of two bits to the fields for each of the instructions
in a cache line may require modifications to the optimized
design of the cache data array RAM macros, as writes to
these bits can take place from the logic that detects the
actual result width. An alternative and one that is more
desirable, is to use a separate, independent array of
prediction bits common to all of the cache ways. For an S-
way instruction cache that has Q instructions per line, this
implies that this array of predictions bits will have 2*S*Q
bits in each row. The identity of the way providing the
instruction line on an I-cache hit can be used to extract the
relevant prediction bits from the row that was read out
using the set index. The default prediction used for the
width is that the result is predicted to be a full-width
instruction. This prediction is revised when the result is
actually computed. Of course, alternative prediction
schemes, using prediction tables outside of the I-cache, can
also be used, as in [31]. The complete evaluation of these
techniques is beyond the scope of this paper.

One can also avoid using width predictors and instead
rely on the explicit width specifications typically provided
by the ISA. For example in the Alpha ISA, the instruction
opcodes can be easily used to distinguish between 32-bit

and 64-bit instructions (i.e. addq vs. addl, ldq vs. ldl, etc.)
However, such information can only distinguish two result
classes. The use of the width predictor allows for the
differentiation among several width classes at any level of
granularity.

The main difference of Speculative Packing from
Conservative Packing stems from the fact that a destination
register is allocated based on the predicted length of the
result at the time of renaming the instruction. The
modifications to the instruction renaming/dispatch stage
activities are as follows:
• Use the predicted result class to allocate a destination

register
• Record the specifier consisting of a physical register

address and a parts bit mask for this destination in the
rename table and within the ROB entry for the instruction
Instruction dispatch stalls if an allocation is not possible

(as in the base case design). The tag broadcast for the
wakeup of dependent instructions in the IQ now uses a
physical register address as well as the parts bits for the
register allocated based on the prediction. This implies,
following the notation used earlier that each tag bus has 2*r
+ 9 lines.

When a result has been calculated, the writeback stage
implements the following steps in parallel:
• If the predicted width is higher than the width of the

allocated result repository, an update broadcast, as in
Conservative Packing, is performed to update the parts
field of dependent instructions. Additionally, if the
corresponding architectural register was not renamed, the
rename table entry for the destinations is updated with the
new value of the parts bits. Simultaneously, the unused
portion is deallocated, as described in Section 3.2. A
possible alternative to this step will be to do nothing and
simply waste the unused byte fields. This, of course,
requires the result to be sign extended to the allocated
length before it is written into the register file.

• If the predicted width is smaller than that of the computed
result, an allocation attempt is made to find a result
repository of the correct width. If this allocation is
successful, an update broadcast and a possible rename
table update is performed as described in the last step. If
the allocation fails, then we have the potential for a
deadlock.
Deadlocking can occur in the scenario described above if

the failure to allocate a repository for the result holds up
instruction commitment and the release of free space in the
register file. This situation is analogous to what is
encountered in a scheme where register allocations are
delayed till the result is generated [7, 19, 33]. However, the
important difference is that in register packing, the situation
leading to a potential deadlock can occur only on a rare
occasion of a width misprediction when no appropriately
sized physical register part is available in the free lists.

Since the deadlocks occur very infrequently in our scheme,
sophisticated deadlock management mechanisms are not
required and simple techniques works very well as we
detail later in the paper.

The logic necessary for handling the tag updates in
Speculative Packing is very similar to the logic described in
Section 4.3, Figure 4. The width estimation logic of Figure
4 is augmented to simply detect a width misprediction of a
more general nature (The original logic of Figure 4 simply
detected if the result was not full-width). As in the case of
Conservative Packing, the FUs simply supply a full-width
result. The writing of the significant parts into the assigned
register is part of the RF write logic. Width mispredictions
are detected by comparing the number of 16-bit slots in the
original allocation against the number of 16-bit slots
actually required by the generated result.

5.2 Avoiding Deadlocks

Several possible solutions exist for avoiding the possible

deadlocks when an instruction whose result width was
mispredicted cannot obtain an appropriately sized physical
register part from the free lists.

Flush Younger Instructions (FYI): The simplest
possible scheme for avoiding a deadlock as described
earlier is to flush all instructions prior to the one for which a
repository allocation on a width misprediction failed.
Instruction execution resumes with the dispatch of the
instruction for which the misprediction occurred, assuming
that the result is a full-width one (for simplicity). One can,
of course, remember the actual width and use that as the
width predicted on restarting. This solution will not have a
large performance penalty as long as the prediction rate is
very high, which is indeed the case.

Steal From Younger (SFY): A potentially more
efficient solution, but one that is clearly more complicated,
is to locate the most recently dispatched instruction, say I,
that was allocated a repository of the required width or a
higher width and reassign all or part of this repository to the
instruction whose width was under-predicted. All
instructions following I are flushed from the pipeline and
instruction dispatch resumes from instruction I. This, in
some sense, is similar to “stealing from the younger”
scheme described in [33] in the context of handling
deadlocks with late register allocation.

Other solutions of varying complexity are possible,
including a variation of the last one, where a minimum
number of full-width registers are kept reserved for
allocations on a width under-prediction, resorting to SFY
only when the number of free reserved registers drops to
zero. As shown in the results section, none of these
complications are necessary and SFY does not provide any
noticeable performance benefits compared to FYI, mainly
because the actions involved in either solution are
performed very infrequently, as in most cases the

appropriately sized register part is available on a width
misprediction.

5.3 Main Benefits

Speculative Packing makes two expected improvements

over Conservative Packing. These are as follows:
In Conservative Packing, an update broadcast is always

needed when the result falls into the classes C1 through C3
(Another way of looking at Conservative Packing is to
think of it as a variation of Speculative Packing, with a
prediction that the result is in class C4). In Speculative
Packing, the update broadcast is mandated whenever a
result’s width is unpredicted (An update broadcast can be
avoided in Speculative Packing on width-overpredictions).
Thus, assuming the width distributions as given earlier, and
the high likelihood of predicting a result’s width,
significantly fewer update broadcasts are required in
Speculative Packing.

Conservative Packing locks up a full width register
allocated to an instruction till at least the width of the result
is known. Speculative Packing, on the other hand, allocates
register portions based on the predicted width. Again, given
a high width prediction ratio and the distributions of the
data widths, Speculative Packing keeps more register
portions available than Conservative Packing.

Table 1. Configuration of the Simulated Processor

6. Simulation Methodology

Our simulation environment was developed from scratch
in C++, and includes a detailed cycle-accurate pipeline
simulator (our code is rooted in the Simplescalar simulator
[1], but has very little resemblance to it in the final version).
To target programs, this environment exactly replicates
Linux 2.6 on an Alpha 21264 at the system call and ISA
level. All benchmarks were compiled with gcc 3.3.3 for the
Alpha 21264 instruction set (compiler options: -O99 -

funroll-loops -mcpu=ev67 -mtune=ev67 -mfix -mcix -
mbwx -mfloat-ieee-fno-trapping-math). These options
deliver the maximum possible optimization the compiler is
capable of. The programs were then linked with the stock
Linux glibc 2.3.3 for Alpha, compiled with the same
options. For this study, we use 17 SPEC 2000 benchmarks;
we had difficulty compiling the other benchmarks in our
environment, mainly those that are written in Fortran 90 or
C++. The results from the simulation of the first 1 billion
instructions were discarded and the results from the
execution of following 200 million instructions were used.
Reference inputs were used for all simulated benchmarks.
Table 1 shows the processor configuration used.

7. Experimental Results

7.1 Evaluation of Conservative Packing

We first evaluate the performance of Conservative
Packing. Figure 5 shows the commit IPCs for 4 different
situations. The leftmost bar shows the IPC of a 4-way
baseline machine as defined in Section 6. The next bar
depicts the performance of Conservative Packing where 8
tag buses are used. Since we simulated a 4-way machine, 8
tag buses are always sufficient to avoid any collisions
between the regular tag broadcasts and the tag re-broadcasts
performed during the re-assignment of registers. In this
case, 4 of these tag buses are essentially reserved for tag
rebroadcasts and have to be wider than the normal tag
buses. Compared to the baseline case, the performance is
increased by more than 14% on the average across the
benchmarks, ranging from 40% (art) to 1% (ammp). Such a
low performance increase in ammp is not surprising since
ammp’s performance is predominantly constrained by a
large number of D-cache misses, diminishing any gains due
to the register file optimizations.

The next bar shows the performance of the system where
both the tag re-broadcasts and the regular tag broadcasts
share the same 4 tag buses. In this case, the priority is
always given to the tag re-broadcasts and the selection of
the instructions which are not able to obtain the access to
the tag bus for the regular tag broadcast are delayed. One
can see a fairly drastic performance degradation compared
to the case where the number of tag buses is unrestricted.
On the average, performance loss is 8% compared to the
configuration with 8 tag buses. Compared to the baseline
case, there is still 6% performance improvement on the
average. It should also be noted that some of the
benchmarks (bzip2, gcc, parser, ammp) exhibit worse
performance than even the baseline case. This is obviously
a consequence of the fact that delaying the execution of
some instructions, even by one cycle, is very critical to the
performance of these benchmarks.

The rightmost bar of Figure 5 shows the performance of
Conservative Packing when all tag re-broadcasts are

Parameter Configuration
Machine width 4-wide fetch, 4-wide issue, 4 wide commit
Window size

64 entry issue queue, 64 entry load/store queue,

128–entry ROB
Function Units

and Latency
(total/issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2
Load/Store (2/1), 2 FP Add (2), 1FP Mult (4/1)

/ Div (12/12) / Sqrt (24/24)
L1 I–cache

32 KB, 2–way set–associative, 64 byte line, 1

cycles hit time
L1 D–cache

64 KB, 4–way set–associative, 64 byte line, 2

cycles hit time
L2 Cache

unified
2 MB , 8–way set–associative, 128 byte line, 6

cycles hit time
BTB 4K entry, 2–way set–associative

Branch
Predictor

Combined with 1K entry Gshare, 8 bit global
history, 4K entry bimodal, 1K entry selector

Memory 256 bit wide, 80 cycles first part, 1 cycle
interpart

TLB
32 entry (I) – 2-way set-associative, 128 entry
(D) – 16-way set associative, 12 cycles miss

latency

handled within a single cycle and the rest of the pipeline is
stalled during that cycle. Such an arrangement avoids
complications associated with arbitrating for the tag buses
between the re-broadcasts and the regular tag broadcasts.
Unfortunately, this results in an average performance
degradation of 27% compared to the base case, and is
therefore not an attractive option. Such a large performance
drop is expected, as the number of the tag re-broadcasts in
Conservative Packing is very significant. The reduction of
the number of the tag re-broadcasts is exactly what has
motivated Speculative Packing, where totally different
trade-offs occur, as we detail in the next subsection.

0

0.5

1

1.5

2

2.5

3

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

Base 8 tag buses 4 tag buses 1 cycle stall on tag re-broadcasts
Figure 5 – Performance of Conservative Packing

7.2 Evaluation of Speculative Packing

Figure 6 shows the performance of Speculative Packing

for the configurations detailed in the previous subsection
(base case, 8 tag buses, 4 tag buses and 1 cycle stall on the
tag re-broadcasts). In all cases, we assumed that on a width
misprediction and the subsequent failure to allocate a
required register partition (because of the absence of such
in the free lists) all instructions following the mispredicted
instruction (and including that instruction itself) are flushed
and the fetching restarts from the mispredicted instruction
using the actually computed result width as a prediction
(which will always be correct). While it may seem that
handling potential deadlocks in such a fashion could result
in a significant performance loss, this is not the case
because the prediction accuracy is high. Later in this
subsection, we also evaluate alternative mechanisms for
avoiding deadlocks.

For the case where 8 tag buses are used, the performance
is increased by more than 16% on the average across the
benchmarks, ranging from 46% (art) to 4% (ammp)
compared to the baseline case. When 4 tag buses are shared
among the tag re-broadcasts and the regular tag broadcasts,
the average performance is still 15.5% higher than in the
baseline case. One can see that in Speculative Packing,
there is little difference between using 8 tag buses and
sharing 4 tag buses. Again, this is a consequence of the high
width prediction accuracy, representing a marked difference

from what we observed in Conservative Packing. Even
when the pipeline is stalled for 1 cycle during the tag re-
broadcasts, the performance of Speculative Packing does
not significantly degrade – it is still 10% higher than the
performance of the base case on the average, although some
benchmarks (mcf, parser, ammp, equake) exhibit a slight
performance degradation. Unsurprisingly, these are the
benchmarks (except ammp, which is dominated by D-cache
misses) which have relatively lower width prediction
accuracy (Figure 2).

0

0.5

1

1.5

2

2.5

3

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

Base 8 tag buses 4 tag buses 1 cycle stall on tag re-broadcasts
Figure 6 – Performance of Speculative Packing
Figure 7 presents a comparison of two deadlock

avoidance schemes (FYI and SFY, Section 5.2). The first
scheme flushes all the instructions following the
mispredicted instruction while the second scheme tries to
find a younger instruction to which an appropriately sized
physical register part was allocated. That part is then
“stolen” from that younger instruction and only the
instructions that follow the younger instruction are
replayed. As seen from the figure, there is virtually no
performance difference between the two schemes. The
average IPC difference is only 0.3% (with a maximum of
1.9% for swim). At first glance, this result seems to be
counterintuitive. To understand why this is indeed the case,
we need to closely examine the actions that transpire after a
width misprediction and a subsequent failure to allocate a
required register repository, and analyze the associated
penalties.

These penalties come from two sources. First, a precise
processor state (in particular, the state of the rename table)
has to be reconstructed and, second, the instructions
following the mispredicted instruction, or the instruction
from which a register was stolen, have to be re-fetched and
re-executed. We assume that the shadow copies of the
rename table are created at every branch, thus to reconstruct
a precise state of the rename table, all we need to do is to
apply the modifications performed by the instructions
between the mispredicted instruction (or the instruction
from which the register was stolen) and the most recent
preceding branch to the shadow copy of the rename table
created for that branch. Obviously, the latency of this
operation only depends on the distance between the

instruction in question and the prior branch. Whether the
instruction in question is a mispredicted instruction itself or
a younger instruction from which a register was stolen does
not impact this latency. We actually verified in our
simulations that this latency is about the same in both cases,
as one would expect. Therefore, the only difference
between the two schemes comes from potentially replaying
a smaller number of instructions if stealing from the
younger is used. However, as the number of times that such
replays are needed is very small, there is almost no impact
on the IPCs. For these reasons, the additional complexities
involved in implementing SFY are not justified to support
register packing.

0

0.5

1

1.5

2

2.5

3

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

flush all steal from younger
Figure 7 – Comparison of Deadlock Avoidance

Techniques

0%

1%

2%

3%

4%

5%

6%

7%

8%

9%

10%

11%

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

Figure 8 – Percentage of Width Mispredictions

when Required Physical Register Part cannot be
found in the Free Lists

Figure 8 shows the actual percentage of width
mispredictions when required physical register part cannot
be found in the free lists. This percentage is below 3.5% for
all benchmarks with the exception of art and swim. Coupled
with the high prediction accuracy, results of Figure 8 can be
used to explain why the possibility of a deadlock is
miniscule in our schemes and why there is almost no
difference in the bars presented in Figure 7. The only two
benchmarks that have a higher percentage of cases when a
width misprediction could result in a deadlock are art and
swim. For swim, the width prediction accuracy is relatively

lower (about 90%) so there is some difference in the bars of
Figure 7 for swim. On the contrary, the width prediction
accuracy for art is more than 97%, so despite the relatively
high percentage of cases where a register cannot be found
in the free lists, the resulting impact of the deadlock
avoidance mechanisms on the IPC is almost negligible.

0

0.5

1

1.5

2

2.5

3

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

tw
ol

f

vp
r

am
m

p

ap
pl

u

ap
si ar
t

eq
ua

ke

m
es

a

m
gr

id

sw
im

w
up

w
is

e

IN
T

A
ve

ra
ge

FP
 A

ve
ra

ge

To
ta

l A
ve

ra
ge

Base 64+64 Register Packing 64+64 Base 128+128
Figure 9 – Comparison of Register Packing and

Doubling the Number of Physical Registers
Finally, Figure 9 presents the comparison between using

register packing (we assumed Speculative Packing where 4
tag buses are shared) and simply doubling the number of
physical registers in the base case. The leftmost bar shows
the performance of the baseline case with 64 integer and 64
floating point registers. The middle bar shows the
performance of register packing with 64 integer and 64
floating point registers when Speculative Packing is used.
Finally the rightmost bar shows the performance of a
baseline machine with 128 integer and 128 floating point
registers. For integer benchmarks, the performance of
register packing comes to within 0.8% of the performance
of the baseline case with 128 integer and 128 floating point
registers. For floating point benchmarks, the performance
difference between register packing and the baseline case
with 128 registers is about 10%. In fact, for FP benchmarks,
register packing realizes slightly more than half of the
speedup achieved by simply doubling the number of
registers. This is primarily due to the benchmarks where a
high percentage of generated values are double precision
floating point values requiring full 64 bit registers to store
them (applu, apsi, mgrid, refer to Figure 1 for details). On
the average across all benchmarks, doubling the number of
registers increases the IPC of the baseline case by about
22%, while the use of register packing increases the IPCs
by 16%. In other words, register packing realizes 73% of
the maximum performance improvement achievable by
doubling the number of registers, with 94% for the integer
benchmarks and 56% for the floating point benchmarks.
The performance difference between the baseline case with
128 registers and register packing with 64 registers is about
6% on the average across all benchmarks, 0.8% for the
integer benchmarks and 13% for the floating point
benchmarks.

8. Related Work

Researchers have exploited the inefficiencies in register

usage to reduce the number of registers in three major
ways. One set of solutions delays the actual allocation of
physical registers until the time that the result is written
back [19, 7, 33]. Delayed physical register allocation was
also used in [17] to reduce the conflicts over the write ports
in a multiple-banked register file. The second set of
techniques aim at reducing the register file pressure by
using the early deallocation of physical registers [14, 15,
16, 24, 41, 45]. In [46], a combination of early deallocation
and late allocation was used to completely avoid register
allocation for a large number of instructions. The third set
of solutions reduces the number of registers through the use
of register sharing [4, 11, 18].

Replicated [12] and distributed [21, 22] register files in a
clustered organization have been used to reduce the number
of ports in each partition and also to reduce delays in the
connections in-between a function unit group and its
associated register file. Alternative register file
organizations (mainly using various forms of caching) have
also been explored for reducing the access time (which goes
up with the number of ports and registers), particularly in
wire-delay dominated circuits [5, 3, 2, 26]. In [25], register
file usage was optimized using compiler support to exploit
dead value information. Asymmetrically ported register file
was proposed in [43].

Techniques based on the value range analysis were
extensively used in high-level code transformations [35, 36,
37]. In [28], the information about the operand sizes was
used to rewrite the source code such that each data type has
an associated width component. Several techniques were
also proposed to directly exploit the fact that many
operands and results in a datapath have narrow width. Most
of these techniques propose optimizations for power
efficiency [28, 29, 30]. In [28], a scheme for encoding
significant zeros is exploited and investigated for power
reduction in scalar pipelines. In [29], the presence of zero
bytes was exploited for reducing the cache energy
consumption. A software-controlled operand gating is
proposed in [30], where the ISA is extended to include the
opcodes that specify operand widths. In [39, 40], narrow
width operands were exploited to reduce the power
requirements of a value predictor.

Several researchers proposed compiler optimizations and
architectural techniques to exploit the narrow-width
operands for performance by packing multiple operations
together to execute on the same FU. In [27], Brooks et.al.
proposed a technique to detect the widths of the instructions
to be executed and pack them so that they can be executed
at the same time using the wide ALU. Similar mechanism
was proposed in [31], but instead of detecting the data
width deterministically before scheduling, the width is

predicted. [32] proposed a similar approach for a VLIW-
style machine. Compiler support to synthesize SIMD
instructions from basic block statements was proposed in
[34]. While these techniques exploit the narrow operands
(and in some cases use the width prediction) for packing
multiple operations on the ALU, we use the same
motivations for packing multiple results within a common
physical register. Our schemes can be very well used in
conjunction with the techniques of [27] and [31].

In [24] Lipasti et al introduced a technique for reducing
register file pressure that exploits significance compression
[28]. In their technique, narrow width results are stored in
the rename table entry itself. The work of [24] and this
work offer two distinct solutions for exploiting narrow
width operands for easing the register pressure.

A compiler based solution for packing multiple sub-
word values into a single register in embedded processors
was proposed in [44].

9. Concluding Remarks

We proposed microarchitectural techniques to pack

multiple narrow-width results into a common physical
register. Our first scheme, a conservative technique,
allocates a full-sized physical register for every dispatched
instruction and later reassigns a smaller-width register
partition to this instruction, if the result turns out to be
narrow-width. The drawback of this scheme is in the need
to frequently re-broadcast the destination register tags when
register reassignments are performed. Our second
technique, a predictive scheme, avoids this complication by
predicting the result width at the time of instruction
renaming and allocating just the right register partition to
hold the result. On a rare occasion of width mispredictions,
the same tag buses used for the regular tag broadcast can be
also employed to re-broadcast the new register tags to the
dependent instructions still waiting in the instruction queue.

For a 4-way processor with 64 integer and 64 floating
point registers, the predictive scheme with the tag bus
sharing achieves 15% average IPC improvement across
simulated Spec 2000 benchmarks. This gain is achieved
with reasonable additional datapath complexities and
without any increase in the number of tag buses.

10. Acknowledgements

We thank Matt Yourst for his help in developing the
simulation environment. We would also like to thank
Aneesh Aggarwal, Matt Yourst, Joseph Sharkey and the
anonymous reviewers for their valuable comments on this
paper. This work was supported in part by DARPA through
contract number FC 306020020525 under the PAC-C
program, the NSF through award No. EIA 9911099.

11. References

[1] Burger, D. and Austin, T. M., "The SimpleScalar tool set:

Version 2.0", Tech. Report, Dept. of CS, Univ. of Wisconsin-
Madison, June 1997 and documentation for all Simplescalar
releases (through version 3.0).

[2] Balasubramonian, R., Dwarkadas, S., Albonesi, D.,
"Reducing the Complexity of the Register File in Dynamic
Superscalar Processor", in Proc. of MICRO-34, 2001.

[3] Borch, E., Tune, E., Manne, S., Emer, J., "Loose Loops Sink
Chips", in Proc. of HPCA, 2002.

[4] Balakrishnan, S., Sohi, G., “Exploiting Value Locality in
Physical Register Files”, in Proc. of MICRO-36, 2003.

[5] Cruz, J-L. et. al., "Multiple-Banked Register File
Architecture", in Proc. of ISCA-27, 2000.

[6] Franklin, M., Sohi, G., "Register Traffic Analysis for
Streamlining Inter-Operation Communication in Fine-Grain
Parallel Processors", in Proc. of MICRO-25, 1992.

[7] Gonzalez, A., Gonzalez, J., Valero, M., “Virtual-Physical
Registers”, in Proc. of HPCA-4, 1998.

[8] Hu, Z. and Martonosi, M., "Reducing Register File Power
Consumption by Exploiting Value Lifetime Characteristics",
in Workshop on Complexity-Effective Design (WCED), 2000.

[9] Hinton, G., et.al., “The Microarchitecture of the Pentium 4
Processor", Intel Technology Journal, Q1, 2001.

[10] Jaleel A. and Jacob B. "In-line interrupt handling for
software-managed TLBs." in Proc. of ICCD-19, 2001.

[11] Jourdan, S., Ronen, R., Bekerman, M., Shomar, B. and Yoaz,
A., “A Novel Renaming Scheme to Exploit Value Temporal
Locality through Physical Register Reuse and Unification”,
in Proc. of MICRO-31, 1998.

[12] Kessler, R.E., "The Alpha 21264 Microprocessor", in Micro,
19(2), 1999.

[13] Kim, N., Mudge, T., "Reducing Register Ports Using Delayed
Write-Back Queues and Operand Pre-Fetch", in ICS, 2003.

[14] Martinez, J., Renau, J., Huang, M., Prvulovich, M., Torrellas,
J., "Cherry: Checkpointed Early Resource Recycling in Out-
of-order Microprocessors", in Proc. of MICRO-35, 2002.

[15] Moudgill, M., Pingali, K., Vassiliadis, S., "Register
Renaming and Dynamic Speculation: An Alternative
Approach", in Proc. of MICRO-26, 1993.

[16] Monreal, T., Vinals, V., Gonzalez, A., Valero, M. “Hardware
Schemes for Early Register Release”, in ICPP-02, 2002.

[17] Park, I., Powell, M., Vijaykumar, T., "Reducing Register
Ports for Higher Speed and Lower Energy", in MICRO, 2002.

[18] Tran, N., et.al., “Dynamically Reducing Pressure on the
Physical Register File through Simple Register Sharing”, in
Proc. of ISPASS-2004, 2004.

[19] Wallase, S., Bagherzadeh, N., "A Scalable Register File
Architecture for Dynamically Scheduled Processors", in
Proc. of PACT-5, 1996.

[20] Yeager, K., “The MIPS R10000 Superscalar
Microprocessor", IEEE Micro, Vol. 16, No 2, April, 1996.

[21] Canal, R., Parserisa, J.M., Gonzalez, A., “Dynamic Cluster
Assignment Mechanisms”, in Proc. of HPCA-6, 2000.

[22] Farkas, K., Chow, P., Jouppi, N., Vranesic, Z., “The
Multicluster Architecture: Reducing Cycle Time Through
Partitioning”, in Proc. of MICRO-30, 1997.

[23] Azevedo, A., et.al., “Profile-based Dynamic Voltage
Scheduling using Program Checkpoints in COPPER
Framework”, in Proceedings of DATE, 2002.

[24] Lipasti, M., et.al., “Physical Register Inlining”, in Proc. of
ISCA, 2004.

[25] Martin, M., Roth, A., Fischer, C., “Exploiting Dead Value
Information”, in Proc. Of MICRO-30, 1997.

[26] Butts, A., Sohi, G., “Use-Based Register Caching with
Decoupled Indexing”, in Proc. of ISCA, 2004.

[27] Brooks, D. and Martonosi, M., “Dynamically Exploiting
Narrow Width Operands to Improve Processor Power and
Performance", in Proc. of HPCA, 1999.

[28] Canal R., Gonzales A., and Smith J., “Very Low Power
Pipelines using Significance Compression", in Proc. of
MICRO-33, 2000.

[29] Villa, L., Zhang, M. and Asanovic, K., “Dynamic Zero
Compression for Cache Energy Reduction", in MICO 2000.

[30] Canal, R., Gonzalez, A., Smith, J., “Software-Controlled
Operand Gating”, in Proc. of the Intl. Symp. On Code
Generation and Optimization, 2004.

[31] Loh, G., “Exploiting Data-Width Locality to Increase
Superscalar Execution Bandwidth”, in MICRO-35, 2002.

[32] Nakra, T., et.al., “Width Sensitive Scheduling for Resource
Constrained VLIW Processors”, Workshop on Feedback
Directed and Dynamic Optimizations, 2001.

[33] Monreal, T., et.al., “Delaying Physical Register Allocation
Through Virtual Physical Registers”, in Proc. of MICRO-34
1999.

[34] Larsen, S., Amarasinghe, S., “Exploiting Superword Level
Parallelism with Multimedia Instruction Sets”, in Proc. of the
Conferenc on Programming Language Design and
Implementation, 2000.

[35] Budiu, M., et.al., “BitValue inference: Detecting and
Exploiting Narrow Bitwidth Computations”, in Proceedings
of EuroPar 2000.

[36] Patterson, J., “Accurate Static Branch Prediction by Value
Range Propagation”, in Proc. of PLDI, 1995.

[37] Stephenson, M., et.al., “Bitwidth Analysis with Application
to Silicon Compilation”, in Proc. of PLDI, 2001.

[38] Cao, Y., “A System-Level Energy Minimization Approach
Using Datapath Width Optimization”, in Proc. of ISLPED,
2001.

[39] Sato, T., Arita, I., “Table Size Reduction for Data Value
Predictors by Exploiting Narrow Width Values”, in Proc. of
ICS, 2000.

[40] Loh, G., “Width Prediction for Reducing Value Predictor
Size and Power”, in the 1st Value Prediction Workshop (Held
in conjuction with ISCA-30), 2003.

[41] Ergin, O., Balkan,D., Ponomarev, D., Ghose, K., “Increasing
Processor Performance Through Early Register Release”, in
Proceedings of ICCD, 2004.

[42] Aggarwal, A., Franklin, M., Ergin, O., “Defining Wakeup
Width for Efficient Dynamic Scheduling”, in ICCD 2004.

[43] Aggarwal A. and Franklin M., “Energy Efficient
Asymmetrically Ported Register Files” in Proc. of ICCD-21.
2003.

[44] Tallam S. and Gupta R., “Bitwidth Aware Global Register
Allocation”, In Proc. of SIGPLAN-SIGACT, 2003.

[45] Balkan D., Ergin O., Ponomarev D., Ghose K. “Selective
Writeback: Improving Processor Performance and Energy
Efficiency”, in Proc. of IBM p=ac2 conference, 2004.

[46] Balkan D., Ponomarev D, Ghose K. “Predicting, Detecting
and Exploiting Transient Values”, in the 2nd Value Prediction
Workshop (held in conjunction with ASPLOS XI), 2004

