
Appears in the Proceedings of the International Conference on Supercomputing, June, 2002

Low--Complexity Reorder Buffer Architecture
Gurhan Kucuk Dmitry Ponomarev Kanad Ghose

Department of Computer Science
State University of New York, Binghamton, NY 13902--6000

e--mail:{gurhan, dima, ghose}@cs.binghamton.edu
http://www.cs.binghamton.edu/~lowpower

ABSTRACT

In some of today’s superscalar processors (e.g.the Pentium III), the
result repositories are implemented as the Reorder Buffer (ROB)
slots. In such designs, the ROB is a complex multi--ported structure
that occupies a significant portion of the die area and dissipates a
non--trivial fraction of the total chip power, as much as 27% according
to some estimates. In addition, an access to such ROB typically takes
more than one cycle, impacting the IPC adversely.

We propose a low--complexity and low--power ROB design that
exploits the fact that the bulk of the source operand values is obtained
through data forwarding to the issue queue or through direct reads of
the committed register values. Our ROB design uses an organization
that completely eliminates the read ports needed to read out operand
values for instruction issue. Any consequential performance
degradation is countered by using a small number of
associatively--addressed retention latches to hold the most recent set
of values written into the ROB. The contents of the retention latches
are used to satisfy the operand reads for issue that would otherwise
have to be read from the ROB slots. Significant savings of the ROB
real estate as well as power savings in the range of 20% to 30% for the
ROB are achieved using the proposed technique. At the same time,
the fact that results are accessible in a single cycle from the retention
latches actually leads to an overall improvement in the IPC of up to
3% on the average for SPEC 2000 benchmarks.

Categories and Subject Descriptors
C.1.1 [Processor Architectures]: Single Data Stream Architectures
-- pipeline processors
B.5.1 [Register--Transfer--Level Implementation]: Design --
data--path design

General Terms
Design, Performance, Algorithms

Keywords
Low--power design, low--complexity datapath, reorder buffer

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ICS’02, June 22--26, 2002, New York, New York, USA.
Copyright 2002 ACM 1--58113--483--5/02/0006...$5.00.

1. INTRODUCTION

Contemporary superscalar microprocessors rely on aggressive
execution reordering mechanisms to maximize the number of
instructions committed per cycle. One of the main dynamic
instruction scheduling artifacts used in such datapath designs is the
Reorder Buffer (ROB) [17], which guarantees the recovery to a
precise state when interrupts occur. The ROB is also used to handle
branch mispredictions. It is typically implemented as a circular FIFO
queue with head and tail pointers. Entries are made at the tail of the
ROB in program order for each of the co--dispatched instructions.
Instructions are committed from the head of the ROB to the
architectural register file (ARF), preserving the correct (program)
order of updates to the precise state maintained in the ARF.

Most high--performance processors take care of false data
dependencies by using register renaming. In some of the register
renaming implementations, the ROB slots also serve as physical
registers. Such a datapath, which closely resembles Pentium III
processor [9], is shown in Figure 1. Here, the results produced by
functional units (FUs) are written into the ROB slots and
simultaneously forwarded to dispatched instructions waiting in the
Issue Queue (IQ) at the time of writeback. The result values are
committed to the ARF at the time of instruction retirement. If a source
operand is available at the timeof instruction dispatch, thevalue of the
source register is read out from the most recently established entry of
the corresponding architectural register. This entry may be either an
ROB slot or the architectural register itself. If the result is not
available, appropriate forwarding paths are set up.

The ROB is generally implemented as a multi--ported register file,
sometimes augmented with associative addressing capabilities. A
significant power dissipation occurs during associative lookup of
ROB entries, in the course of ROB writes for setting up new entries
or generating result values, and in the course of reading out data from
the ROB during operand reads or commits. For example, a recent
study by Folegnani and Gonzalez [6] estimated that about 27% of the
total power expended within a Pentium III--like microprocessor is
dissipated in the ROB.

In this paper, we propose a considerably simplified ROB architecture,
which exploits the fact that in a typical superscalar processor the bulk
of the source operand values is obtained through data forwarding or
from reading of the architectural registers containing committed
register values. Only a very small percentage of sources -- about 5%
on the average across simulated SPEC 2000 benchmarks -- are read
from the ROB. Our design completely eliminates read ports on the
ROB for reading out the source operand values and provides the same
functionality as the traditional datapath at almost the same, and
sometimes better, performance.

At the time of instruction writeback, the produced results are written
into the ROB and simultaneously forwarded to dispatched, waiting
instructions in the issuequeue. The elimination of theROB read ports
means that the produced result is not accessible to any instruction that
was dispatched since the result was written into the ROB till the result

Dcache

F2

Instruction
dispatch

FU 1

FU 2

FU mFetch

IQ

Instruction
issue

Function
Units

EX Result/status
forwarding buses

ROB

Figure 1. Superscalar datapath where ROB slots serve as
physical registers

ARF

LSQ

Connections for reading
physical registers: requires
read ports on ROB

Decode/
Dispatch Committment

F1 D1 D2 D3

is committed and written into the ARF. We supply the operand value
to instructions that were dispatched in the duration between the
writing of the result into the ROB and the cycle just prior to its
commitment to the ARF by simply forwarding the value (again) on
the forwarding buses at the time of its commitment.

Such design potentially introduces multi--cycle “holes” in data
availability, when the data is available to subsequent instructions
during the writeback/forwarding stage, then it disappears for a
number of cycles during its residency in theROB and then is available
again from the ARF. To counter any performance degradation that
results as a consequence of such “holes”, we use a small number of
associatively--addressed retention latches to hold the most recent set
of values written into the ROB. The contents of the retention latches
are used to satisfy the operand reads for issue that would otherwise
have to be read from the ROB slots.

The rest of the paper is organized as follows. Section 2 outlines the
ROB structures and complexities. The motivation for the low--power
and low--complexity ROB design is given in Section 3. Details of our
approach for ROB complexity minimization are presented in Section
4. Section 5 describes our simulation methodology followed by the
discussion of the experimental results in Section 6. Related work is
described in Section 7 and we conclude in Section 8.

2. ROB COMPLEXITIES

Theentry established in the ROB for adispatched instruction includes
at least the following fields: (a) a result field to hold the value
generated by the instruction that targets a register; some instructions
do not make use of this field; (b) a bit to indicate if the result field is
valid; (c) the address of the instruction (“PC value”); (d) exception
codes and (e) architectural register id (used for updating the
architectural register within the ARF at the time of committing the
instruction.)

When one has to consider higher precision results, the ROB entry for
an instruction can be widened, but space would be wasted when
smaller precision results are stored. Alternatively, each entry can be
wide enough to accommodate single--precision results. Extended
precision resultswill require the allocation of anumber of consecutive
entries in the ROB; additional ports (each narrower) will be needed in
this case. This latter approach, however, wastes spacewithin theROB
entries for storing the PC values and exception codes, since only one
of the single--precision entries for an instruction that produces a
higher precision result needs to store this information. For the rest of

this paper, we consider a ROB organization that is wide enough to
only accommodate single--precision results.

Architectural registers can be mapped to physical registers through an
explicit rename table; the ROB is directly addressed in this case. An
alternative to the rename table is to use an associative addressing
mechanism within the ROB for locating the most recently established
ROB entry for that architectural register, as was used in AMD K5, for
example [16]. To the best of our knowledge, such
associatively--addressed ROB is no longer used in current
implementations, so we consider directly addressed ROBs in the
remainder of this paper.

Irrespective of the particular implementation, the ROB integrating
physical registers is an extremely port--rich structure, especially in
wide--issue processors. When a relatively slow clock rate is used, it
may be possible to reduce the number of ports on the ROB (and the
rename table) by multiplexing the ports. Given the relatively large
access time of the ROB, such multiplexing becomes increasingly
difficult as the clock frequencies increase. Implementation problems
arising with the reduced number of register file ports are discussed in
[4].

Figure 2 summarizes the port requirements for a ROB of a W--way
superscalar processor. The widths (number of bits) for each port are
also shown in this figure, where a is the number of bits in the
architectural register address. Two operand widths are assumed: 32
bits and 64 bits; 64--bit operands are generated into two 32--bit
architectural registers.

ROB

* allows up to 2W double length operands; information for each double
operand requires 2 ports

4W, 32--bit read
ports to read source
operand values*

2W read ports, each (73+a)
bits wide,(for result, 32--bit PC
value, 8--bit exception code
and result valid flag), used
during commitment*

2W write ports, each 41
bits for writing 32--bits of
result and 8--bit exception
code and result valid flag*

Figure 2. ROB port requirements for a W--way
superscalar datapath

W 34--bit wide write ports to write
32--bit PC and valid flag and
single/double indicator to ROB
entries (single or double) -- see
text.

The ROB complexity, as seen from the preceding discussions, can be
quite substantial. The large number of ports, aside from increasing
the device count linearly with the number of ports, increases the
layout area for the bitcell array almost quadratically with the number
of ports, as additional ports increase each lateral dimension of abitcell
linearly. This isbecause each ROB port requires itsown set of bit lines
and word select lines, accounting for the linear growth in each lateral
dimension of a bitcell. Furthermore, each port also requires a
dedicated address decoder and peripheral logic in the form of sense
amps, prechargers and write drivers. In high--end superscalar CPUs,
the ROB area can be a significant fraction of the overall die area. For
example, the reorder buffer (“instruction queue”) on the PA 8000
occupiesabout 15% of the total chip area [7]. Such complex ROB also
represents a major source of total chip power dissipation -- as high as
27% [6]. Finally, multiple cycles are often needed to read the data
values from such large multi--ported structure [4, 5]. In the baseline
datapath of Figure 1, we assumed that two cycles are needed to access
the ROB. Thus, three “D--stages” are used: stage D1 is used for
decoding and register renaming and stages D2 and D3 are used for
accessing the ROB and moving the instruction into the issue queue.

Figure 3. The origin of source operands in the baseline superscalar processor

(b) 96--entry ROB, 4--way processor

0

20

40

60

80

100

Bypass network ROBARF

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ap
si

ar
t

m
es

a

eq
ua

ke

m
gr

id

sw
im

wu
pw

ise

Av
g.

in
t

Av
g.

fp

Av
er

ag
e

%

(a) 72--entry ROB, 4--way processor (c) 128--entry ROB, 6--way processor

a b c a b c a b c

In the result section, we also compare the performance of our new
architecture with the idealized baseline datapath, assuming that the
ROB can be accessed in one cycle.

3. MOTIVATIONS

It is worthwhile to consider strategies for reducing the complexity of
the ROB, particularly from the standpoint of power dissipation. A
detailed simulation of the SPEC 2000 benchmarks [18] on the
baselineprocessor of Figure1 reveals an interesting fact -- only asmall
fraction of the source operand reads require the values to come from
the ROB. Section 5 details the datapath used in this study.

In Figure 3, we show the percentage of operand reads that are satisfied
through forwarding, from reads of the ARF or from readsof theROB,
for three different configurations. The three configurations differ in
the number of ROB entries and the issue widths. As seen from Figure
3, for a 4--way machine with 72--entry ROB, the bulk of the operand
reads (in excess of 61%) is satisfied through forwarding. Sizable
percentage of operands (about 32%) comes from the ARF. These are
mostly the values of stack pointer, frame pointer and base address
registers. Their mappings typically do not change for large number of
cycles and these registers remain valid in the ARF. Irrespective of
processor configuration, thepercentageof caseswhen sourceoperand
reads are satisfied from the ROB represents only a small percentage
of all source operands. For example, for a 4--way processor with a
72--entry ROB, only 0.5% through 16% of the source operands
comes from the ROB with the average of 5.9% across all simulated
benchmarks. Note, that the results change slightly between the three
considered configurations in a non--intuitive manner because of
dynamics of instruction processing. The rather small percentage of
reads of source operand values from the ROB suggests that the
number of connections, i.e., the number of ports for reading source
operand values from the ROB can be drastically minimized or, better
yet, eliminated altogether to reduce the ROB complexity and power
dissipation directly.

Completely eliminating the read ports for reading source operand
values is fundamentally different from reducing the number of ports
in two ways. First, the elimination of ports removes the ROB access
from the critical path. Of course, other means of supplying the source
operand values to the dispatched instructions must be provided, as
discussed later. In contrast, even if a single port for reading out the
source operands is retained, the two--cycle ROB access time (which
cannot be reduced because the ROB still remains heavily--ported due
to the ports needed for writeback, commitment and entry setup) still
resides on the critical path. Second, complete elimination of ports
avoids design complications associated with managing the register
file (ROB) with reduced number of ports, as discussed in Borch et.al.
[4]. A pleasant side--effect of eliminating the source read ports on the

ROB is that we only read the source values that are committed from
the ROB, thereby eliminating some -- but not all -- spurious
computations using results that are generated on the mispredicted
path(s).

4. LOW--COMPLEXITY ROB DESIGN

Consistent with theobservation made in Section 3, wepropose theuse
of a ROB structure without any read ports for reading source operand
values. Results are written into the ROB and simultaneously
forwarded to dispatched, waiting instructions on the result/status
forwarding bus. Till the result is committed (and written into the
ARF) it is not accessible to any instruction that was dispatched since
the result was written into the ROB. Since it is not possible for
dispatched instructions to repeatedly check for the appearance of a
result in the ARF (and then read it from the ARF), we need to supply
the operand value to instructions that were dispatched in the duration
between the writing of the result into the ROB and the cycle just prior
to its commitment to the ARF. As shown in Figure 4, we do this by
simply forwarding the value (again) on the forwarding buses at the
time it is committed. We will see shortly that there is no need to
forward each and every result from the ROB at the time of
commitment. Neither do we need to increase the number of
forwarding paths compared to the baseline case, as the utilizations of
such paths are quite low.

4.1 Reducing Performance Degradation
The elimination of the ROB read ports for reading out source operand
values results in “disappearance” of these values for several cycles. In
particular, the value is initially available through forwarding network
in the writeback cycle. As operand read ports are eliminated in the
ROB, the value is not available again until it commits from the ROB
to the ARF, at which point the second forwarding of the same value
occurs. Certainly, the issue of some instructions that could not read
this value from the proposed ROB structure will be delayed.

To compensate for any resulting performance degradation, we use a
set of latches, called retention latches, to cache results recently
written to the ROB. Each retention latch is capable of holding a
single--precision result, so double precision results would need two
latches. Instructions dispatched since the writing of a result to the
ROB can still access the value as long as they can get it from the
retention latches. In case the lookup for source operand fails to find
it within the retention latches, the operand value will be eventually
obtained through the second forwarding of the same value when it is
written to the ARF from the ROB. The modified datapath with
retention latches is shown in Figure 4.

Dcache

F2

Instruction
dispatch

FU 1

FU 2

FU mFetch

IQ

Instruction
issue

EX

ROB

Figure 4. Superscalar datapath with the simplified ROB and
retention latches

ARF

LSQ

Decode/
Dispatch

F1 D1 D2

No read ports needed on ROB

for reading in operands for

dispatched instructions

Retention

latches

Connections for reading

“recent” results

4.2 Details of the Simplified ROB
We now discuss our proposed low--complexity ROB design in some
detail.

As soon as a function unit completes execution and writes its result
and exception codes into the ROB, it simultaneously writes the result
into one (or two, if the result is double precision) of the retention
latch(es) displacing an earlier--written result (or, in the case of double
precision results, thecontentsof two latches). Weuse three techniques
for choosing victim latches for such writebacks: a FIFO policy, a true
LRU policy and a random replacement, as detailed later.

At the time of dispatch, the ROB index of the entry for a source
operand is obtained from the rename table if the “committed” flag
within the entry indicates that the corresponding value is yet to be
committed to the ARF. If the “result valid” bit of this ROB entry is set
(meaning that the result has already been produced), this ROB index
is used as akey to probe theassociatively--addressed retention latches.
Note that an architectural register id cannot be used as a key into the
retention latches to locate the most recent value of the architectural
register, since the writes into the retention latches take place out of
program order in general. Consequently, the most recently written
value in the retention latches may not correspond to the most recent
“reincarnation” of the architectural register. On a successful match,
the source operand value is obtained from the retention latches.
Otherwise, data forwarding paths (for the second forwarding) are set
up using the ROB index number in the usual manner. If the “result
valid” bit is not set, the source will be supplied through usual
forwarding at the time of its writeback.

In Figure 5, we show the relevant timing diagram, assuming a
two--stage process for decoding, dispatching and source operand read
stages (hereafter called D--stages) and compare it with a three--stage
process for the same steps in the baseline model of Figure 1.

The datapath shown in Figure 4 has two D--stages instead of three
D--stages in the baseline model, because one cycle is used for register
renaming and two cycles are needed to access the complex, large
multi--ported register file (implementing ROB) in the baseline model
[4, 5]. In fact, this is an optimistic estimate in favor of the baseline
model: other contemporary researchers assumed a higher latency of
a register file access -- for example, in [4], the register file access time
is assumed to be three CPU cycles. Such multi--stage register file
(ROB) has a negative impact on performance and/or complexity in
two ways. First, branch misprediction penalties increase because of
the extra stage at the front end of the pipeline; second, performance
degrades significantly if multiple levels of forwarding (bypassing) are

not implemented [5]. In particular, if only the first level of forwarding
is used for a two--stage register file, then a data value is available at the
time of writeback/forwarding, then it “disappears” for one cycle, and
then it is available again from the register file. The problem with such
design is significant additional complexity of the issue logic needed
to schedule the instructions around the “holes”. An alternative
approach is to keep only the last level of bypass, thus avoiding the
“holes”. This effectively increases the latency of each functional unit
by one cycle and has a very serious effect on IPCs -- 20% across our
simulated SPEC 2000 benchmarks. Similar results were reported in
[5] for SPEC 95 codes. Of course, performance drop can be avoided
or drastically minimized by implementing a full/multi--level
bypassing mechanism. However, this entails significant complexity
in the form of more forwarding busses and comparators needed to
perform the tag matching for instruction wake--up.

Rename
Table
Lookup for
ROB index

Associative look-
up of operand
from retention
latches using
ROB index as
key

Smaller delay:
few latches

D1 D2

Source
operand
read from
the ROB

D1 D2
(a) Timing of the modified ROB (b) Timing of the baseline model

Figure 5. Assumed timing for the low--complexity ROB
scheme and baseline model

D3

Rename
Table
Lookup for
ROB index

Source
operand
read from
the ROB

In order not to hinder the baseline model, we compare the
performance of our proposed architecture against three different
implementations of the basecase: single--cycleROB access (idealized
base case), 2--cycle ROB access with full bypass, and 2--cycle ROB
access with only the last stage of bypassing.

4.3 Retention Latch Management Strategies
We study three variations of managing the retention latches. The first
one is a simple FIFO scheme, where the retention latch array is used
as a shifter. The writing of a result into a retention latch (or a pair of
retention latches) causes the contents of one (or two) earliest written
latch(es) -- at the tail end of the latch array -- to be shifted out and lost.
The new results are written into the vacated entries at the head of the
latch array. Even though the number of latches in the shifter array is
small compared to the ROB size, it is possible, albeit highly unlikely,
that duplicate entries keyed by a common ROB index will co--exist
within the retention latches. This can, for example, happen in an
extreme scenario when an instruction with a destination register is
allocated to an ROB entry, and there is no other instruction with
destination register (only stores and branches are encountered) until
the same ROB entry is again reused for allocations. In such case, the
contents of retention latches are not shifted and we end up having two
retention latches keyed with the same physical register id. Branch
mispredictions can also cause a ROB slot to be reallocated and two
entries keyed with the same ROB index to co--exist within the
retention latches. To avoid any ambiguity in finding the correct entry
in such situations, we design the matching logic to return the most
recently--written result in the retention latches. This is relatively easy
to achieve, since the most recently--written value is always the closest
to the head end of the latch array. The latch array is designed as a
multi--ported structure to support simultaneous writes and reads. To
support the reading and writing of up to W double precision or W
single precision results from/to the retention latches, they are

implemented to support 4W associative addressing ports (requiring
4W comparators per latch) and to support 2W write ports.

The second variation of the retention latch structure is one where the
latch contents are managed in a true LRU fashion. A true LRU
scheme can be implemented since the number of latches is small (8 to
16). The LRU management policy allows only recently--used result
values -- and ones that are likely to be used again -- to be retained
within these latches. The LRU management policy isoffering abetter
performance on the average across the simulated benchmarks; we
discuss this phenomenon in detail in Section 6. As in thecase of FIFO
latches, it is conceivable, that two different entries, keyed with the
same ROB index can reside within the retention latches. This
happens when a result value continues to be frequently used from the
retention latches and when the ROB slot is committed and eventually
allocated to another instruction that establishesa duplicateentry in the
retention latches. In contrast to the FIFO latches, the logic needed for
selecting the most recently--produced value is more complicated,
because the value can be located anywhere in the latch array. For this
reason,weavoid theneed for any disambiguating logicby deleting the
entry for a ROB slot from the retention latches when its contents are
committed to the ARF. We do this by associatively addressing the
retention latches at the time of committing and marking the matching
entry, if any, as deallocated. As in the case of the FIFO retention
latches, branch mispredictions can introduce duplicate entries in the
retention latches, keyed with a common ROB index. We avoid any
consequential ambiguity in such an instance by invalidating the
existing entries for ROB indices that are to be flushed because of the
misprediction. This later invalidation is accomplished in a single
cycle by adding a “branch tag” to the instructions and to the retention
latch keys to invalidate retention latch entries that match the tag of the
mispredicted branch. A simpler solution is to flush the entire set of
retention latches in the case of branch misprediction. As shown in
Section 6, this alternative degrades performance to a very little extent.

The third conceivable option is to use retention latches with random
replacement policy. While this scheme is inferior in performance to
both FIFO and LRU latches (as we demonstrate in Section 6), none
of the design complications associated with LRU latches is
eliminated: the corresponding entries still need to be flushed from the
latches at the time of result commitment and some form of flushing
need to occur on branch mispredictions.

4.4 Optimizing the Retention Latches
As seen from the data in Figure 3, the percentage of reads satisfied
from the ROB is quite low. Consequently, the pressure on the
retention latches is also low. Thus, the number of read ports to the
retention latches can be drastically cut down from 4W
single--precision result wide ports to only a few (1 or 2) read ports.
Some of the instructions will be delayed because of contention over
the limited number of retention latch ports, but this has little impact
on performance, as discussed in Section 6. While implementing the
register file (however small it is) with reduced number of ports can be
problematic in general [4], in this particular case an instruction
competing for the retention latch port will attempt to do so only once.
If an attempt to acquire a port fails, an instruction is moved to the issue
queue anyway, and obtains the result at the time of the second
forwarding. We do not attempt to redispatch this instruction, since it
would incur significant complexity and the effect on performance is
not clear. The oldest--first arbitration scheme for the use of limited
number of ports to the retention latches is used among the
co--dispatched instructions, that is, the earliest instruction in program
order has the highest priority for using a port. Note, that only the
number of read ports to the retention latches is reduced, the number
of write ports stays at its maximum level (2W for our architecture).

4.5 Reducing Forwarding Bus Contention
If all results were forwarded for the second time during their
commitment from the ROB to the ARF, it would have created a
significant pressure on the result/forwarding buses potentially
requiring the allocation of extra buses to sustain performance. For this
reason, only results whose values were actually sought from the ROB
need to be forwarded at the time of commitment. ROB entries that
need to be forwarded are marked as follows. An attempt to look up
a source whose value is only within the ROB (“committed” bit not set
and “result valid” bit set in the rename table entry) will cause the ROB
entry to be marked; this requires 4W additional 1--bit wideports to the
simplified ROB.

ROB

4W, 32--bit read ports to
read source operand values

2W read ports, each (73+a) bits
wide,(for result, 32--bit PC value,
8--bit exception code and result
valid flag), used during commitment

2W write ports, each 41 bits wide
for writing 32--bits of result and
8--bit exception code and result
valid flag

W, 34--bit wide write ports to
write 32--bit PC and valid flag
and single/double indicator to
ROB entries (single or double)

(a) Low--Complexity ROB

Status

Result values

L--ported CAM field (key = ROB slot id) + first--match logic

L ROB--slot
addresses

L recently--written results

2W write ports for writing
up to W results in parallel

FIFO queue:
Q latches

(b) Generic retention latch structure

Figure 6. Low--Complexity ROB and retention latches
(ROB simplifications/changes highlighted)

4W, 1--bit wide write ports
to mark entries that have to be forwarded
at the time of their commitment

It may so happen that a ROB entry marked for commitment may
forward a result in vain, as the value sought may have been retrieved
from the retention latches. Additional logic for avoiding this spurious
traffic is overly complicated and not worth the investment as the
selective forwarding traffic is already quite low, as seen from Figure
3. A result may thus show up on the forwarding bus twice -- once (and
always) when it is written to the ROB from a FU and possibly again
when it is committed to the ARF from the ROB. All sources for the
forwarding buses -- including, in this case, the ROB, compete as usual
for access to the buses. Our experiments showed that there is little
difference in performance for various priority assignment schemes,
mainly because forwarding at the time of commit occurs infrequently,
as detailed below. In all presented experiments, the forwarding at the
time of writeback was given the highest priority in accessing the
forwarding buses.

Such selective forwarding of committed results generatesonly asmall
additional traffic on the forwarding buses. In our simulations, we
observed that the percentage of such forwarding is limited to 3.5% on
the average across all the benchmarks and for all the configurations
studied, depending on the number of retention latches used as well as

the management policy. That is, about 3.5% of the generated results
need to be forwarded for the second time. In terms of forwarding bus
usage, only 0.05 buses are utilized per cycle on the average by the
second forwarding. This allows us to use the existing forwarding
buses without any noticeable degradation in performance. More
results supporting this claim are presented in Section 6.

If selective forwarding as described is not used, the performance
degradation resulting from the use of the existing set of forwarding
buses can be substantial, because forwarding rate would increase by
a factor of two; the only way to avoid performance loss in such a case
would be to use additional forwarding/result buses.

Figure 6 depicts the details of the proposed ROB and the associated
retention latches.

Table 1. Architectural configuration of simulated processors

Parameter Configuration

Machine
width

4--wide fetch, 4--wide
issue, 4--wide commit

6--wide fetch, 6--wide
issue, 6--wide commit

Window size 32 entry issue queue,
96 entry ROB,
32 entry load/store queue

48 entry issue queue,
128 entry ROB,
48 entry load/store queue

Function
Units and
Latency
(total/issue)

4 Int Add (1/1), 1 Int Mult
(3/1) / Div (20/19), 2
Load/Store (2/1), 4 FP
Add (2), 1FP Mult (4/1) /
Div (12/12) / Sqrt (24/24)

6 Int Add (1/1), 2 Int Mult
(3/1) / Div (20/19), 3
Load/Store (2/1), 6 FP
Add (2), 2FP Mult (4/1) /
Div (12/12) / Sqrt (24/24)

L1 I--cache 32 KB, 2--way set--associative, 32 byte line,
2 cycles hit time

L1 D--cache 32 KB, 4--way set--associative, 32 byte line,
2 cycles hit time

L2 Cache
combined

512 KB, 4--way set--associative, 128 byte line,
4 cycles hit time

BTB 1024 entry, 4--way set--associative

Branch
Predictor

Combined with 1K entry Gshare, 10 bit global history,
4K entry bimodal, 1K entry selector

Memory 128 bit wide, 60 cycles first chunk, 2 cycles interchunk

TLB 64 entry (I), 128 entry (D), fully associative,
30 cycles miss latency

5. SIMULATION ENVIRONMENT

We used the AccuPower toolset [15] to evaluate the effects of the
proposed architecture on the performance, power dissipation and the
overall complexity of the ROB. The widely--used Simplescalar
simulator [1] was significantly modified (the code for dispatch, issue,
writeback and commit steps was written from scratch) to implement
true hardware level, cycle--by--cycle simulation models for such
datapath components as the ROB (integrating a physical register file),
the issue queue, and the rename table. The studied configurations of
superscalar processors are shown in Table 1.

We simulated the execution of 10 integer (bzip2, gap, gcc, gzip, mcf,
parser, perlbmk, twolf, vortex and vpr) and 8 floating point (applu,
apsi, art, equake, mesa, mgrid, swim and wupwise) benchmarks from
SPEC 2000 suite. Benchmarks were compiled using theSimplescalar
GCC compiler that generates code in the portable ISA (PISA) format.
Reference inputs were used for all the simulated benchmarks. The
results from the simulation of the first 1 billion instructions were
discarded and the results from the execution of the following 200
million instructions were used for all benchmarks.

For estimating theenergy/power for thekey datapath components, the
event counts gleaned from the simulator were used, along with the
energy dissipations, as measured from the actual VLSI layouts using
SPICE. CMOS layouts for the ROB and the retention latches in a0.18
micron 6 metal layer CMOS process (TSMC) were used to get an
accurate ideaof theenergy dissipations for each typeof transition. The
register file that implements the ROB was carefully designed to
optimize the dimensions and allow the use of a 2 GHz clock. A Vdd
of 1.8 volts was used for all the measurements.

6. RESULTS AND DISCUSSIONS

In this section, we evaluate the implications of the proposed
techniques in terms of performance, power dissipation and theoverall
complexity of the ROB.

6.1 Performance
We begin by showing the effects of eliminating the ROB read ports
for reading out source operand values on the performance. Figure 7
shows the IPCs of a 4--way machine with 96--entry ROB. Results are
shown for four configurations: three baseline cases and the machine
without any ROB read ports. (In the rest of the paper by saying “no
ROB read ports” we mean “no ROB read ports for reading out source
operand values”. Of course, ROB read ports needed for instruction
commitment are still retained). The first bar of Figure 7 shows IPCs
of the idealized baseline model with a single cycle ROB access time.
We call this configuration Base 1. The second bar shows IPCs of a
more realistic baseline machine with two--cycleROB accessand a full
bypassnetwork; this is referred to as Base2. The third bar shows IPCs
of a machine that does not implement a full bypassand only maintains
the last level of bypassing logic, effectively extending the latencies of
functional units by one cycle. Finally, the fourth bar shows the IPCs
of the proposed machine with no ROB ports. We assume that write
accesses to the ROB still take two cycles.
Compared to the idealized baselinemachine Base1, theconfiguration
with no ROB read ports performs 9.6% worse in terms of IPCs on the
average. (We computed the average performance drop/gain by
computing the drops/gains within individual benchmarks and taking
their average). Across the individual benchmarks, the largest
performance drop is observed for swim (36.7%), parser (16.9%) and
equake (13%). There are many reasons why the performance drop is
not necessarily proportional to the percentage of sources that are read
from the ROB in the baseline model. Performance is dependent on
the number of cycles that an instruction, whose destination was
sought from the ROB as a source, spends in the ROB from the time
of its writeback till the time of its commitment. This directly effects
the duration of “holes” that are created by eliminating the read ports
from the ROB. Another important factor is the criticality of these
sources for the performance of the rest of the pipeline.

Some benchmarks experience almost no performance degradation,
such as mgrid (1.05%) and bzip2 (1.3%). What is remarkable about
these results, is that even compared to the idealized base case, the total
elimination of the ROB read ports for reading out the source operand
values results in only less than 10% performance degradation on the
average. This data supports the basic tenet of this paper, which is that
the performance loss is quite limited even if the capability for reading
out the sources from the ROB is not present. A 10% performance
drop is the absolute worst case and, as we show later, the use of
retention latches significantly improves performance and, combined
with faster access time of the results, actually provides a
better--performing architecture in some cases.

Compared to the baseline model with 2--cycle ROB access and full
bypass, the configuration with zero ROB ports results in 6.5% drop

Base with 1--cycle ROB access

Figure 7. IPCs of baseline configurations and configuration without ROB read ports for reading out source operand values

0

1

2

3

4
Base with 2--cycle ROB access and full bypass 0 ROB read ports

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ap
si

ar
t

m
es

a

eq
ua

ke

m
gr

id

sw
im

wu
pw

ise

Av
g.

in
t

Av
g.

fp

Av
er

ag
e

IPC

Base with 2--cycle ROB access and 1 bypass

in IPCs on the average. The drop is smaller than in the previous case
because of the extra cycle that is added to the front end of the basecase
pipeline, thus increasing the branch misprediction penalties. A few
benchmarks (applu, bzip2 and mgrid) actually showed small
performance improvements.
Not surprisingly, the system with no ROB read ports performed
significantly better than the baseline model with only the last level of
bypassing -- performance gains are in excess of 11% on the average
across all benchmarks. Only three benchmarks (vortex, art and swim)
still exhibited some performance degradation.
Table 2 shows the performance improvements achieved by using
retention latches. The first two columns of Table 2 show the IPCs of
two optimisticbaseline configurations -- Base1 and Base 2. We do not
consider thebaseline model with partial bypass in the rest of thepaper,

because of its poor performance. Results in the first two columns are
similar to those shown in Figure 7 and they are given here only for
convenience. The next column shows the IPCs for the configuration
with zero ROB read ports -- again, these results were already graphed
in Figure 7. The following three sets of columns show the
performance of the architecture that uses retention latches managed as
a FIFO, retention latches with LRU replacement policy and retention
latches with random replacement policy, respectively. The “x--y”
notation specifies the number of retention latches (x) and the number
of read ports (y) to these latches in each case. The number of write
ports to the retention latcheswasassumed to be eight in all simulations
to support simultaneous writeback of four double--precision values.
Results of Table2 wereobtained by simulating a4--way machinewith
96--entry ROB.

Table 2. IPCs of various ROB configurations

Base
1

Base
2

0 ROB
read
ports

Retention Latches with FIFO
replacement

Retention Latches with LRU
replacement

Retention Latches with
random replacement

ports
8--1 8--2 8--16 16--2 16--16 8--1 8--2 8--16 16--2 16--16 8--16 16--16

bzip 3.05 2.95 3.01 3.03 3.03 3.03 3.03 3.03 3.03 3.04 3.04 3.04 3.04 3.03 3.03

gap 1.87 1.82 1.65 1.80 1.81 1.82 1.84 1.84 1.85 1.85 1.87 1.87 1.87 1.74 1.76

gcc 1.62 1.56 1.53 1.60 1.60 1.61 1.61 1.62 1.61 1.61 1.62 1.62 1.62 1.59 1.61

gzip 2.31 2.25 2.04 2.25 2.26 2.26 2.29 2.29 2.28 2.30 2.30 2.30 2.31 2.25 2.28

mcf 0.88 0.88 0.82 0.83 0.84 0.84 0.86 0.87 0.86 0.86 0.87 0.88 0.88 0.86 0.86

parser 1.84 1.76 1.53 1.68 1.71 1.72 1.79 1.80 1.72 1.79 1.80 1.82 1.83 1.66 1.71

perl 1.76 1.67 1.60 1.65 1.66 1.66 1.70 1.71 1.70 1.72 1.72 1.74 1.75 1.63 1.65

twolf 1.29 1.29 1.24 1.27 1.27 1.27 1.28 1.28 1.27 1.29 1.29 1.29 1.29 1.27 1.28

vortex 1.80 1.73 1.62 1.72 1.73 1.75 1.76 1.79 1.75 1.76 1.77 1.78 1.79 1.75 1.77

vpr 1.59 1.56 1.49 1.53 1.55 1.56 1.56 1.57 1.54 1.57 1.58 1.58 1.58 1.54 1.56

applu 2.71 2.56 2.64 2.66 2.66 2.66 2.67 2.67 2.66 2.66 2.66 2.68 2.68 2.66 2.67

apsi 1.94 1.88 1.81 1.88 1.89 1.90 1.90 1.91 1.89 1.89 1.90 1.92 1.93 1.89 1.89

art 1.21 1.18 1.07 1.15 1.16 1.16 1.18 1.18 1.16 1.16 1.16 1.18 1.18 1.12 1.15

equake 1.97 1.90 1.71 1.75 1.88 1.88 1.88 1.88 1.74 1.84 1.95 1.84 1.97 1.66 1.73

mesa 2.10 2.04 1.93 2.04 2.04 2.05 2.06 2.06 2.06 2.06 2.06 2.06 2.08 2.03 2.05

mgrid 2.85 2.71 2.82 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.85 2.84 2.84

swim 2.70 2.59 1.71 2.64 2.64 2.64 2.65 2.66 2.65 2.69 2.69 2.69 2.69 2.62 2.65

wupwise 2.50 2.39 2.26 2.26 2.26 2.26 2.26 2.26 2.26 2.50 2.50 2.50 2.50 2.26 2.29

Int avg. 1.80 1.75 1.65 1.74 1.75 1.75 1.77 1.78 1.76 1.78 1.79 1.79 1.80 1.73 1.75

FP avg. 2.25 2.16 1.99 2.15 2.17 2.18 2.18 2.18 2.16 2.21 2.22 2.21 2.24 2.14 2.16

Average 2.00 1.93 1.80 1.92 1.94 1.94 1.95 1.96 1.94 1.97 1.98 1.98 1.99 1.91 1.93

As seen from the table, even eight single--ported retention latches
managed as a FIFO reduce the performance penalty to about 4.1% on
the average compared to the baseline configuration Base 1. The most
dramatic improvement is observed for swim: 36.7% performance
drop is reduced to 2.2%. With the exception of equake (11.7%), the
IPC drop of all benchmarks was measured to be below 10% in this
case. Compared to the baseline model Base 2, the average IPC drop
is only 0.9%, and several benchmarks (bzip2, gcc, applu and mgrid)
actually have performance improvement of up to 5%. Fully--ported
set of eight FIFO retention latches brings the performance drop down
to 3% on the average compared to Base 1, and results in a small
performance gain of about 0.2% compared to Base 2. As seen from
this example and other results presented in Table 2, the number of
ports to the retention latches have only marginal impact on the IPCs
for the majority of the simulated benchmarks.

Performance can be further improved by increasing the number of
latches, although increasing the number of latches beyond 16 can
make it problematic to perform the associative lookup of the latches
and read the source operand values (in the case of a match) in one
cycle. The use of sixteen 16--ported FIFO latches results in 1.9%
performance loss compared to Base 1 and 1.4% performance gain
compared to Base 2. In this configuration, wupwise experienced the
largest performance drop among the individual benchmarks -- 9.6%
compared to Base 1 and 5.4% compared to Base 2.

Further performance improvement is achieved by using the set of
retention latches with LRU replacement policy. The motivation here
is that the samevaluestored in oneof the latchescan beused more than
once. According to [5], around 10--15% of the sources are consumed
more than once, the fact corroborated by our experiments. One
obvious example is the value of a base register used by neighboring
load or store instructions or the use of values of the stack pointer and
the frame pointer. Table 2 shows the performance of the system with
8 and 16 LRU retention latches with various number of ports. The
average performance loss of the system with 8 single--ported LRU
latches is 3.1% compared to Base 1. Compared to Base 2, there is a
performance gain of 0.1% on the average. Example of equake shows
that the LRU scheme does not necessarily outperform FIFO scheme,
especially if the number of ports to the latches is limited. This is
because some of the values that are consumed only once are retained
in the latches by LRU policy at the expense of other potentially usable
sources that would have otherwise been kept in the latches if FIFO
strategy wasused. In general, FIFO latches require larger sizes to cope
with the capacity misses whereas eight LRU latches are sufficient to
hold frequently used operands in most of the cases. Theconfiguration
with sixteen 16--ported LRU latches comes as close as 0.4% in
performance to Base 1 configuration and improves the performance
by about 3% on the average with respect to baseline configuration
Base 2. This provides a measurable improvement over the
performance of sixteen 16--ported FIFO latches.

The last two columns of Table 1 show the performance of a
configuration that uses retention latches with random replacement
policy. Eight fully--ported retention latches with random replacement
policy perform 3.5% worse than eight fully--ported LRU latches and
1.6% worse than eight fully--ported FIFO latches. For sixteen
fully--ported latches, the random replacement strategy performs 3%
worse than LRU and 1.6% worse than FIFO. This makes the use of
retention latches with random replacement an unattractive choice.

We also studied the performance effects of simpler retention latch
management in the cases of branch mispredictions for LRU latches,
where the contents of the entire set of retention latches are flushed on
every misprediction instead of selective invalidation of retention latch
entries. Figure8 shows the results for eight fully--ported LRU latches,
comparing the organizations, where the contents of the retention
latches keeping the results of the instructions executed on a

mispredicted path are flushed and the organization with complete
flushing of retention latches on every branch misprediction. Recall,
that if a complete retention latch flushing is not implemented in the
case of LRU latches, it is necessary to flush the contents of the latches
selectively. The performance drop due to the complete flushing of the
latches is 1.5% on the average. The largest drop among individual
benchmarks was observed for equake (10.8%) and gap (4.8%).
Notice that this optimization is not applicable to FIFO latches,
because the logic needed to select the most recently--produced result
corresponding to an ROB index is still needed and thus no additional
logic is required to support branch misprediction recovery if FIFO
latches are used.

0

1

2

3

4

Figure 8. Effects of simplified retention latch management
in the case of branch mispredictions (LRU latches)

bz
ip

2
ga

p
gc

c
gz

ip

m
cf

pa
rs

er
pe

rl

tw
ol

f
vo

rte
x

vp
r

ap
pl

u
ap

si

ar
t

m
es

a
eq

ua
ke

m
gr

id
sw

im

wu
pw

Av
g.

in
t

Av
g.

fp

Av
er

ag
e

IPC

Selective flushing of retention latches Complete flushing of retention latches

Finally, weevaluated the impact of reducing the number of ROB ports
and using the retention latches on the performance of a more
aggressive, 6--way superscalar CPU. For the sake of brevity, we only
compare the performance of a 6--way machine against the idealized
base case -- Base 1. The configuration with zero ROB read ports
performs 9.8% worse than Base 1 model. The largest IPC drop was
observed for equake (24.6%) and parser (16%). Notice that the
performance of swim only decreased by about 11% compared to Base
1 configuration in contrast to more than 36% drop observed for
4--way machine. The reason for the smaller drop is the larger window
size assumed for a 6--way machine that makes stalls at the time of
dispatch less frequent if either issue queue or the ROB is full.
Simulations of a 6--way machine with the window size identical to
that of a 4--way machine showed performance drop in swim of about
34% -- almost as high as what is observed for a 4--way machine.
Indeed, one of the reasons for the performance drop due to the
elimination of read ports is the potential ROB saturation, because the
oldest in--flight instruction cannot get one of its sources for a large
number of cycles. This inevitably causes the ROB to become full and
consequently results in pipeline stalls. As instruction window size
increases, this problem is somewhat alleviated.
We also studied one FIFO and one LRU configuration for the 6--way
machine. In both configurations we used twelve fully--ported
retention latches. The average performance degradation with the use
of FIFO retention latches was measured as 3.2% with the largest drop
for wupwise (10.4%) and equake (6.6%). The average performance
drop with the use of LRU retention latches was measured as 1% with
the maximum drop of 5.2% observed for art and 2.4% for apsi. These
results are almost identical to what was achieved for a 4--way
processor with eight fully--ported retention latches.

6.2 Power Dissipation and Complexity
Figure 9 shows the percentage of ROB power savings for the
simulated benchmarks for variousROB configurations studied in this
paper. These results are for a 4--way machine with 96--entry ROB. On
the average across all benchmarks, thepower savingscompared to the
fully--ported ROB are 30% for the simplified ROB with no read ports,
23.4% for eight 2--ported FIFO latches, 22.2% for eight 2--ported
LRU latches, 21.1% for sixteen 2--ported FIFO latches, and 20.2% for
sixteen 2--ported LRU latches. Results are consistent across integer

0

10

20

30

40

50

Figure 9. Power savings within the ROB

No ROB ports 8, 2--ported FIFO latches 16, 2--ported FIFO latches8, 2--ported LRU latches 16, 2--ported LRU latches

bz
ip

2

ga
p

gc
c

gz
ip

m
cf

pa
rs

er

pe
rl

tw
ol

f

vo
rte

x

vp
r

ap
pl

u

ap
si

ar
t

m
es

a

eq
ua

ke

m
gr

id

sw
im

wu
pw

ise

Av
g.

in
t

Av
g.

fp

Av
er

ag
e

Po
w

er
Sa

vi
ng

s
%

and floating--point benchmarks. A large power reduction for swim in
the case with no read ports is explained by the large IPC drop which
reduces the number of instructions accessing the ROB per cycle.
Power dissipation within the LRU latches can be reduced by the use
of low--power comparators that dissipates energy predominantly and
only on full matches as suggested in [2] and implemented in [11], but
we avoided the evaluation of such optimization to avoid “coloring”
our current results.

Power savings are lower when the retention latches are used because
of two factors: first, retention latches themselves dissipate some extra
power and second, performance increase as a result of using retention
latches also leads to higher power dissipation. Nevertheless,
noticeable overall power savings are still retained. In terms of total
chip power dissipation (recalling that the ROB is about 27% of it),
savings are on the order of 6--8% depending on the number of
retention latches used.

To get an approximate idea of the reduction in the complexity of the
ROB, we estimated the device counts of the baseline ROBs and the
simplified ROBsand their retention latches. The devicecounts for the
ROB include the bit arrays, the decoders, the prechargers the sense
amps. All devices in the retention latches are counted. For a 96--entry
ROB of a 4--way superscalar processor, the devicecount savings from
getting rid of the ROB read ports are in the range of 23% to 26%
depending on the number of retention latches used, the number of
ports to these latches and the replacement policy used. The ROB area
reduction due to the elimination of read ports for reading out the
source operand values is about 45%, taking into account the area
occupied by the retention latches.

7. RELATED WORK

Lozano and Gao [12] observed that about 90% of the variables in a
datapath are short--lived, in the sense that they are exclusively
consumed during their residency in theROB. This seems to imply that
most of the dependencies are satisfied in the course of forwarding or
reads from the ROB and thus seems to contradict the results presented
in Figure 3. However, the percentage presented by Lozano and Gao
is for the instances of destination registers. In contrast, we don’t keep
track of the register instances that are accessed, but instead show in
Figure 3 the total number of accesses to the produced register values,
irrespective of the instance. For this reason, the percentage of source
reads that are satisfied from the ARF is higher than the percentage of
long--lived variables as reported by Lozano and Gao. For example,
instances of the stack pointer and the global frame pointer are counted
as just two instances by Lozano and Gao; in the results of Figure 3, we
have tens to hundreds of accesses to these two instancesand each such
access is accounted for in Figure 3. Another way to look at it is that
Lozano and Gao consider the statistics for destination registers, while
our analysis is for the source register values; each destination register
can be used as a source by multiple instructions and this is precisely
the case with most registers that are accessed from the ARF.

The idea of using the retention latches in the context of the ROB is
similar in philosophy to forwarding buffer described by Borch et.al.
in [4] for a multi--clustered Alpha--like datapath. Our solution and
Borch et.al.’s solution both essentially extend the existing forwarding
network to increase the number of cycles for which source operands
are available without accessing the register file. A set of forwarding
buffers retains the results for instructions executed in the last nine
cycles. Nine stages of forwarding logic are employed to supply these
results to dependent instructions. Borch et.al. further extend this idea
by using per--cluster register file caches (CRC -- Clustered Register
Cache) to move the register file access out of the critical path and
replace it with the faster register cache access. Each CRC only stores
operands required by instructions assigned to that cluster and
operands needed by a dependent instruction that is unlikely to get
these operands by other means.

There is a growing body of work that targets the reduction of register
file ports. Alternative register file organizations have been explored
primarily for reducing the access time (which goes up with the
number of ports and registers), particularly in wire--delay dominated
circuits [4, 5, 13]. Replicated register files in a clustered organization
have been used in the Alpha 21264 processor [10] to reduce the
number of ports in each replica and also to reduce delays in the
connections in--between a function unit group and its associated
register file.

While replicated register files [10] or multi--banked register files with
dissimilar banks (as proposed in [5], organized as a two--level
structure -- cached RF -- or as a single--level structure, with dissimilar
components) are used to reduce the register file complexity,
additional logic is needed to maintain coherence in the copies or to
manage/implement the allocation/deallocation of registers in the
dissimilar banks. A recent work at reducing the complexity of the
physical register file uses a two--level implementation, along with
multiple register banks [3]. Thecomplexity reduction comes from the
use of banks with a single read port and a single write port in each
bank. The two--level structure allows the first level (banked) register
file to be kept small (and fast), with the higher speed compensating for
IPC dropsarising from limiting thenumber of ports. In [3], additional
work attempting a reduction in the complexity of the register file is
also described, including solutionsused in VLIW datapaths and novel
transport--triggered CPUs.

The idea of caching recently produced values was also used in [8]
(hereafter called “the VAB scheme”). At the time of instruction
writeback, FUs write results into a cache called Value Aging Buffer
(VAB). The register file, holding both speculative and committed
register values, is updated only when entries were evicted from the
VAB. Furthermore, when the required value is not in the VAB, a read
of the register file is needed, requiring at least some read ports for
reading the source operands. Unless a sufficient number of register
fileports is availableor thenumber of entries in theVAB is sufficiently
large, the performance degradation can be considerable. In addition,
in the VAB scheme, the multi--cycle register file access is still an
intimate part of the issue process. In contrast to this, if the required

value is not found in the retention latchesor in the ARF in our scheme,
we still do not read the ROB, thereby eliminating any read ports on
the ROB for reading source operands. By separating the ARF from
the ROB, we satisfy a large percentage of the dependencies from
forwarding, the retention latches, and the ARF, requiring only a small
percentage of sources to be obtained from the ROB. Deferring these
reads does not have any significant impact on performance. Further,
in our scheme, the register file (ROB) access does not form a
component of a critical path.

Some other differences between the VAB scheme and the proposed
technique are as follows. Since the recent results may not necessarily
have been found in the register file, misprediction handling and
interrupt handling with the VAB were somewhat involved;
misprediction and interrupt handling required selective lookup of
values from the VAB for generating a precise state. In our scheme,
results are written to both the retention latches and the ROB; we
simply clear the entire set of the retention latches or invalidate their
contents selectively on a branch misprediction. In fact, as shown in
Figure8, clearing all of the retention latcheson a misprediction, which
is much more simpler to implement, produces almost the same level
of performance as the selective clearing scheme. Unlike the VAB
scheme, there is no need to copy anything from the retention latches
into the ROB. On a miss to the VAB, the necessary accesses to the
large (integrated) register file can dissipate considerable energy. Such
dissipations are eliminated in our scheme; we only access the
relatively small ARF and the retention latches.

To the best of our knowledge, the only work that has addressed ROB
power minimization directly attempts to reduce the ROB power by
using a multi--segmented organization, where segments are
deactivated dynamically if they are not used [14]. The scheme of [14]
is orthogonal to our proposed technique and can be used in
conjunction with our scheme to achieve additional power savings.

8. CONCLUDING REMARKS

The reorder buffer in some modern superscalar processors is a
complex multi--ported structure with multi--cycle access time. Much
of this complexity stems from the need to read and write source
operand values and to commit thesevalues to the architectural register
file. We proposed a scheme to eliminate the ports needed for reading
the source operand values for dispatched instructions. Our approach
for eliminating the source read operand ports on the ROB capitalizes
on the observation that only about 5% or so of the source operand
reads take place from the ROB. Any performance loss due to the use
of the simplified ROB structure was compensated for by using a set
of retention latches to cache a few recently--written values and
allowing the bulk of the source operand reads to be satisfied from
those latches, from forwarding and from reads of the architectural
registers. Our technique also removes the multi--cycleROB access for
source operands read from the critical path and substitutes it with the
faster access to the retention latches. As a result, we have an overall
performance improvement of up to 3% (depending on the latch
management strategy and the number of latches used) on the average
across the simulated benchmarks. For the configurations studied, we
achieved a reduction of about 25% in the device counts of the ROB,
the ROB area reduction of about 45% and the overall chip power
reduction of 6--8%.

In conclusion, our organization seems quite attractive as it
simultaneously lowers the device count, operand access time and
power dissipation in the ROB with a slight gain in performance.

9. ACKNOWLEDGMENTS

We thank Oguz Ergin for helping us with the datapath power
estimation. We also thank anonymous reviewers for their valuable
comments. This work is supported in part by DARPA through
contract number FC 306020020525 under the PAC--C program, the
NSF through award no. MIP 9504767 & EIA 9911099, and by IEEC
at SUNY--Binghamton.

10. REFERENCES

[1] Burger, D. and Austin, T. M., “The SimpleScalar tool set: Version
2.0”, Tech. Report, Dept. of CS, Univ. of Wisconsin--Madison, June
1997 and documentation for all Simplescalar releases (through
version 3.0).
[2] Brooks, D.M., Bose, P., Schuster, S.E. et. al., “Power--Aware
Microarchitecture: Design and Modeling Challenges for
Next--Generation Microprocessors”, IEEE Micro Magazine, 20(6),
Nov./Dec. 2000, pp. 26--43.
[3] Balasubramonian, R., Dwarkadas, S., Albonesi, D., “Reducing
the Complexity of the Register File in Dynamic Superscalar
Processor”, in Proc. of the 34th Int’l. Symposium on
Microarchitecture (MICRO--34), 2001.
[4] Borch, E., Tune, E., Manne, S., Emer, J., “Loose Loops Sink
Chips”, in Proceedings of Int’l. Conference on High Performance
Computer Architecture (HPCA--02), 2002.
[5] Cruz, J--L. et. al., ”Multiple--Banked Register File Architecture”,
in Proceedings 27th Int’l. Symposium on Computer Architecture,
2000, pp. 316--325.
[6] Folegnani, D., Gonzalez, A., “Energy--Effective Issue Logic”, in
Proceedings of Int’l. Symp. on Computer Architecture, July 2001.
[7] Gwennap, L., “PA--8000 Combines Complexity and Speed”,
Microprocessor Report, vol 8., N 15, 1994.
[8] Hu, Z. and Martonosi, M., “Reducing Register File Power
Consumption by Exploiting Value Lifetime Characteristics”, in
Workshop on Complexity--Effective Design, 2000.
[9] Intel Corporation, “The Intel Architecture Software Developers
Manual”, 1999.
[10] Kessler, R.E., ”The Alpha 21264 Microprocessor”, IEEE Micro,
19(2) (March 1999), pp. 24--36.
[11] Kucuk, G., Ponomarev, D., Ghose, K., and Kogge, P.M.,
“Energy--Efficient Instruction Dispatch Buffer Design”, in Int’l.
Symp. on Low Power Electronics and Design (ISLPED’01), August
2001.
[12] Lozano, G. and Gao, G., “Exploiting Short--Lived Variables in
Superscalar Processors”, in Proceedings of Int’l Symposium on
Microarchitecture, 1995, pp. 292--302.
[13] Llosa, J. et.al., ”Non--consistent Dual Register Files to Reduce
Register Pressure”, in Proceedings of HPCA, 1995, pp. 22--31.
[14] Ponomarev, D., Kucuk, G., Ghose, K., “Reducing Power
Requirements of Instruction Scheduling Through Dynamic
Allocation of Multiple Datapath Resources”, in Proc. of the 34th Int’l.
Symposium on Microarchitecture (MICRO--34), December 2001.
[15] Ponomarev, D., Kucuk, G., and Ghose, K., “AccuPower: an
Accurate Power Estimation Tool for Superscalar Microprocessors”,
in Proc. of 5th Design, Automation and Test in Europe Conference
(DATE--02), March, 2002.
[16] Slater, M., “AMD’s K5 Designed to Outrun Pentium”,
Microprocessor Report, vol.8, N 14, 1994.
[17] Smith, J. and Pleszkun, A., “Implementation of Precise Interrupts
in Pipelined Processors”, in Proc. of Int’l. Symposium on Computer
Architecture, pp.36--44, 1985.
[18] Standard Performance Evaluation Corporation, “Spec2000”,
2000. http://www.spec.org.

