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Abstract

With reducing feature size, increasing chip capacity, and
increasing clock speed, microprocessors are becoming in-
creasingly susceptible to transient (soft) errors. Ensuring
reliability in microprocessors typically involves executing
replicated threads for concurrent error detection. Redun-
dant threads significantly increase the pressure on the pro-
cessor resources, resulting in dramatic performance im-
pact.

In this paper, we propose a technique to reduce the pres-
sure on the resources when executing redundant threads
for concurrent error detection. The technique — register
bits reuse — attempts to use the same register (but dif-
ferent bits) for both the copies of the same instruction,
if the result produced by the instruction is of small size.
This may result in the Re-order buffer (ROB) entry for
both the instructions to be exactly the same, which can
be exploited to avoid allocation of separate ROB entries
to the two instructions. We also propose novel ways of
defining a small-sized value to increase their percentage
out of the total values produced. The technique is based
on two very important observations: (i) many of the val-
ues produced in a processor are of small size, and (ii) if
the redundant thread is running behind the main thread
(which has been shown to be more effective than running
both the threads in tandem) by a few instructions, then
the leading instructions usually produce their results be-
fore their trailing counterparts are renamed. Our exper-
iments showed that we obtain about 64.4% performance
improvement and about 18% energy reduction, over the
base case with one redundant thread for concurrent error
detection.

1 Introduction

With the current trends in transistor size, voltage
and clock frequency, microprocessors are becoming
increasingly susceptible to hardware failures. Hard-
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ware errors in the current technology are predomi-
nantly transient errors [5, 18] that occur randomly
due to various reasons such as electromagnetic influ-
ences, alpha particle radiations, power supply fluctu-
ations due to ground bounce, crosstalk or glitches,
and partially defective components and loose con-
nections. Current trends suggest that transient er-
rors will be an increasing burden for microproces-
sor designers [23, 12]. Transient hardware errors
are troublesome because they elude most of the cur-
rent testing methods. A popular approach to de-
tect transient errors is to use redundant threads
[15, 7, 5, 19, 1, 14, 16, 17, 21, 22, 8]. In these tech-
niques, the same application is run multiple times
and the errors are detected by corroborating the re-
dundant results. Studies [22, 8] have shown that a
staggered execution can result in better performance,
because the trailing thread may not incur many of
the branch misprediction and the load miss penalties
incurred by the leading thread.

Running multiple threads places a significant pres-
sure on the processor resources, resulting in a consid-
erable performance loss (almost 62%). Hence, it is
important to investigate techniques that can reduce
the pressure on the resources, and improve perfor-
mance. In this paper, we investigate clever alloca-
tion techniques to optimally allocate resources to the
trailing instructions. These techniques are very well
suited particularly for a staggered exectuion, because
of 2 very important observations: (i) many of the
values produced in a processor are of small size, and
(ii) the leading instructions usually produce their re-
sults before their trailing counterparts are renamed.
Hence, we can exploit the the leading instruction’s
profile for optimal resource allocation.

In this paper, we investigate a technique in this spirit.
The technique — register bits reuse (RBR) — ex-
ploits the result sizes for optimal resource allocation.



If the value produced by a leading instruction is nar-
row, the renamer allocates the same register (as used
by the leading instruction) to the trailing counter-
part. In this technique, the lower bits of the register
hold the leading instruction’s result, and the higher
bits of the register hold the trailing instruction’s re-
sult. We also discuss novel ways of defining a narrow
width value, which result in a significant number of
narrow values (even floating-point values). This tech-
nique can also facilitate avoiding ROB entries for the
trailing instructions. We also discuss detailed imple-
mentations of this technique. We investigate novel
techniques to reduce the load store buffer (LSB) pres-
sure as well. Overall, the technique in this paper give
an average performance improvement of about 64.4%
and an average power reduction of about 18%.

The rest of the paper is organized as follows. Section
2 discusses the background and provides the motiva-
tion for our techniques. Section 3 discusses the details
of our technique. Section 4 presents the experimen-
tal results and analysis. Section 5 presents sensitivity
study. Section 6 presents related work. Finally, in
Section 7, we conclude.

2 Background and Motivation

2.1 Background

In this paper, we consider a reliable microproces-
sor configuration running one redundant thread for
concurrent error detection, shown in Figure 1. The
threads are fetched independent of each other, us-
ing multiple PCs. One thread is always ahead of
the other by a few instructions (staggered execution)
[22]. However, instructions record a bit indicating
whether they are leading or trailing instructions. The
threads are decoded and renamed concurrently. In
the rename stage, different map tables are used for
the two threads. Once renamed, the instructions are
dispatched to the issue queue, ROB, and load/store
buffer (for load and store instructions). The threads
are then executed concurrently. The results of the
multiple copies of the same instruction, from the two
threads, are compared for error detection when the
instructions commit. Since, we use a unified regis-
ter file, at commit, the instructions also update the
backend map-tables. To reduce the register file port
requirements for error detection, we use an additional
value buffer, which also stores the results stored in
the register file and from which the values are read
for comparison at commit time [8].

The entries for the instructions of the two threads are
fixed in the ROB and the LSB, to facilitate finding

multiple copies of the same instruction at the time
of commit. In our processor, only the leading load
and store instructions access the memory, which is
assumed to be transient fault tolerant (by using Error
Detection and Correction Codes). The value loaded
by the leading load instruction is also forwarded to
the register allocated to the trailing load instructions,
using a separate buffer to store the loaded values [8].
However, the addresses of the loads and the stores
(and the value to be stored for the stores) are gener-
ated multiple times, and checked during commit for
any errors.

Deadlocks are avoided by keeping counters that count
the number of trailing instructions in the pipeline. If
any resource is full without any trailing instructions,
then a potential deadlock is avoided by squashing the
younger leading instructions and fetching the trailing
ones, irrespective of the slack condition. The slack
between the threads depends on the size of the various
buffers (such as ROB, LSB, RF, etc.) provided in the
processor. We measured the IPCs with slacks of 32,
64, 96, and 128 instructions. We found that the IPC
improves considerably when going from a slack of 32
to a slack of 64 instructions, and either saturates at a
slack of 64 instructions or reduces for a slack of 96 or
128 instructions. For the rest of the paper, we choose
an instruction slack of 64 instructions between the
threads.

2.2 Motivation

Performance degrades because the resources (such as
ROB, issue queue, LSB, and register file entries, and
dispatch/issue/commit slots) are shared among the
threads. To motivate the resource pressure reduc-
tion techniques, we measured the IPCs (presented in
Figure 2) of 3 configurations — base single-thread
execution (BST), base reliable dual-thread execution
(DTE), and reliable dual-thread execution where the
trailing instructions do not consume any registers,
LSB, and ROB entries (DTE-TNR). The IPC re-
duces dramatically from BST to DTE. For DTE-
TNR, the IPC increases by about 142%, compared
to DTE. Drop in IPC from BST to DTE-TNR is
due to the reduction in the availability of other re-
sources such as the dispatch/issue slots, issue queue
entries, etc. An important observation that can be
made from Figure 2 is that the difference in IPC of
the DTFE and the DTE-TNR configurations is not the
same for all the benchmarks. The difference in IPC
between the DTE and the DTE-TNR configurations
depends on the IPC of the benchmark and the ac-
tual resource pressure observed during program exe-
cution. For instance, the register pressure could be
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Figure 1: Schematic Diagram of a Reliable Processor

lower because of the presence of a larger percentage
of branch and store instructions. If the IPC is lower,
then other shared resources such as the issue queue
can become a bottleneck. If the register/ROB/LSB
pressure is lower, then avoiding allocation of these
resources (DTE-TNR) may not benefit significantly.
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Figure 2: TPCs for 3 configurations showing the ben-
efits from optimal resource allocation to trailing in-
structions

Previous studies [9, 10, 2] have shown that data val-
ues produced in a program tend to be of narrow
widths. Traditionally, values are categorized as nar-
row only if their leading bits are all zeros or ones.
However, this categorization will fail to include most
of the floating-point values because of the IEEE 75/
standard used for their representation. Intuitively,
for a floating-point value, the least significant por-
tion of the significand may have a higher probability
of being all zeros (for instance, a value 0.5). Hence,
in our studies, any value whose at least 16 (for a 32-
bit word) leading or trailing bits are zeros or ones
is categorized as narrow. We observed, there are a
considerable number of values with at least 16 trail-
ing zeros and non-zero bits in the upper 16 bits. For
instance, bzip2 had about 10% values with at least
16 trailing zeros. Overall, about 50% of the results

could be categorized as narrow. This statistic can be
exploited to reduce the pressure on the resources.

It is important to note that it is not sufficient to re-
duce the pressure on just one resource. For instance,
alleviating register file pressure can increase the pres-
sure on LSB and ROB, and the benefits obtained
will be limited. Figure 3 shows percentage distri-
bution of cycles (out of the total cycles where the
resources were requested!) in which the instructions
were stalled due to unavailibility of the different re-
sources. As seen in Figure 3, if the pressure on a re-
source is alleviated, the stalls shift from that resource
to another. For instance, for gcc, the stalls are due
to load/store buffer entries if the trailing instructions
are not allocated either ROB entries or registers, and
the stalls shift to integer registers if the trailing in-
structions are not allocated LSB entries. Hence, it is
imperative to have a comprehensive technique that
attempts to remove the stalls in all the resources.

3 Optimal Resource Allocation

3.1 Register Bits Reuse (RBR)

If a leading instruction produces a narrow result, the
result can be compressed into the lower 16 bits of a
register. In such a case, the upper 16 bits of the reg-
ister do not store significant data, which can be used
for the trailing instruction’s result. The correct value
is constructed by appending 16 zeros or ones either
in front or behind the lower or upper 16 bits of the
register. Figure 4 illustrates the working of the RBR
technique for the instruction i, that produces a nar-
row value Oz fa25ffff. In Figure 4(a), by the time
the trailing counterpart of i, (iyg) is renamed, i, has

L Cycles where the resources are not requested (such as cy-
cles were nothing is decoded or dispatched) are not counted. In
addition, when measuring the stalls, if mutliple resources are
not available, register file is given the highest priority, followed
by ROB and then by LSB.
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already produced a value and stored it in the register
Pyg. When i, g produces the result 0z fa25f f f f, the
value stored in the Pjq is 0z fa25fa25.

The proper functioning of the RBR technique hinges
on the following issues: (i) how is the original in-
struction’s result’s size, and its register, passed to the
replica instruction?, (ii) how are the registers read,
written, committed, and squashed?, and (iii) how are
the errors detected? To handle the first issue, we use
an additional size bit in each ROB entry and an ad-
ditional replica pointer for the ROB (Figure 4(b)).
The size bit indicates the size of the instruction’s re-
sult, and the replica pointer points to the ROB entry
whose replica will be next renamed. When a trail-
ing instruction is renamed, the replica pointer is used
to obtain the size of its leading counterpart’s result
(if any), and the register allocated to it. Note that,
each ROB entry holds the register identifier used by
an instruction to update the backend map tables at
commit. If the size bit is set, the trailing instruction
is allocated the same register as the read from the
ROB and the size bit in its ROB entry is also set,
else another register is sought for the replica. Figure
4(b) shows the renaming and register allocation for
instructions i, and i, that produce a narrow result.

Width, location, and wvalue bit-vectors (each of size
equal to the number of physical registers) are used to
appropriately read and write the registers, as shown
in Figure 4(c). If a leading instruction writes a regis-
ter then, if the result is narrow, the width bit of that
register is set, if the result has non-significant data in
the front, then the location bit is set, and if the non-
significant data is all ones, then the value bit is set.
For the example in Figure 4(c), the width, location,
and walue bits for register Py are “101” as the result

produced by i, is 0z fa25f f f f. In some cases, it may
happen that a trailing instruction is renamed before
the leading instruction generates a narrow result. In
such cases, the leading instructions still compress and
decompress their results. However, it will not affect
the correctness of the technique. Since the copies
of instructions are committed and squashed simulta-
neously, the registers used by these instructions are
de-allocated simultaneously. For error detection, if
the size bit of the replica instruction’s ROB entry is
set, then a single register is read from the additional
value buffer (refer Section 2.1).
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Figure 4: Example Illustrating the RBR technique

In addition to reducing register file pressure, the RBR
technique has the potential of significantly reducing
the energy consumption in the register file, by reduc-
ing both the size and the number of values read from
and written into the register file.

3.2 Optimal ROB Allocation

The ROB entries of the same instruction in the two
threads differs only in the register mapping infor-
mation. The mapping information can be just the
current mapping (for checkpointed branch mispredic-
tion recovery) or both current and previous mapping
(for ROB-walk based branch misprediction recovery).
With the RBR scheme, it is possible that the ROB
entries of the same instruction in the two threads may
be the same. We experiment with a more pathologi-
cal case of ROB-walk based branch misprediction re-
covery, for which both the current and the previous
mappings of an instruction should be the same, for
the ROB entries to be exactly similar. To implement
this scheme, an additional map bit is maintained in
the map table for the trailing instructions. If a trail-
ing instruction is using the same mapping as its lead-
ing counterpart, then the map bitis set. For a trailing
instruction, if the map bit is set and the current map-
ping is also the same its leading counterpart, then
that instruction is not allocated an ROB entry. The
map bit is recovered, on a branch misprediction, while
walking the ROB. This scheme will necessitate that



the ROB entries are protected using error codes?, as
an error in an ROB entry may not detected because
that ROB entry may be used by both the copies of
an instruction.

3.3 Optimal LSB Allocation

Traditionally, LSB implementation is such that load
instructions broadcast their addresses in the store
buffer and store instructions broadcast their ad-
dresses in the load buffer. These broadcasts are fol-
lowed by comparisons to detect any load alias mis-
speculation and store-to-load forwarding. However, if
the leading load and store instructions have already
produced their addresses by the time their trailing
counterparts are dispatched, then the same hardware
can be used to perform the comparisons for error de-
tection. To detect whether a leading memory instruc-
tion has generated its result, another bit is provided
in the ROB which is set when a memory instruction
has generated its result. In this technique, a trail-
ing load instruction (whose leading counterpart has
already generated its result) generates its address on
the store’s address generation unit (AGU). This re-
sults in its address being broadcast in the load buffer
and compared with the leading counterpart’s entry
in the load buffer. Similarly, a trailing store instruc-
tion can generate its address in the load’s AGU, and
compare with the leading counterpart’s entry in the
store buffer. In case the instruction mismatches the
address generated by the leading counterpart, the in-
struction is marked as being faulty. In some cases,
the leading load instruction may not have generated
the address by the time its trailing counterpart is re-
named. In that case, the trailing counterpart can
be given a separate Load Buffer entry. However,
we follow an alternative approach, where the trail-
ing load instruction is made dependent on the lead-
ing load instruction. This is possible because most of
the load instructions have a single register operand.
In the rare case that a load instruction has two reg-
ister operands, then it is allocated a separate load
buffer entry. Note that, for the sake of simplicity,
load alias misspeculation is handled as a branch mis-
speculation. This scheme replaces the write and read
of the address of the trailing instruction, with a sin-
gle broadcast of its address, thus saving energy. Note
that, this technique will require error codes to protect
the store buffer entries once the comparison has been
performed.

This technique may remove all the pressure on the

2The base reliable processor of Figure 1 does not need er-
ror codes for ROB for only error detection. However, it still
requires error codes for error correction.

load buffer due to trailing instructions. However,
store instructions also have the value, to be stored,
in the store buffer entry to support store-to-load for-
warding. Hence, allocation of store buffer entries to
the trailing store instructions can only be avoided for
the instructions that store a narrow value, so that the
space for the value can be shared among the instruc-
tions from both the threads.

3.4 Vulnerability Impact of RBR

Assuming that the DTFE configuration is impervious
to all soft errors, how does the RBR technique affect
the vulnerability of the processor? Firstly, any error
in the additional width, location, and wvalue bits can
result in a fault. Hence, these bits may have to be
duplicated to prevent from such errors from occuring.
The additional bits in the ROB will be protected by
the error codes used for the ROB entries. Secondly,
there is a possibility that an error may not be de-
tected if a leading instruction erroneously produces
a smaller-sized value, and its trailing counterpart is
allocated the upper half of the register. The trailing
instruction may only write half of its result bits into
the upper half of the register, erroneously assuming
that the other half bits hold either zeros or ones. To
address this issue, if an instruction marked as pro-
ducing a small-sized result, produces a normal-sized
value, then the error is detected by tagging the in-
struction as faulty in the ROB. Thirdly, having the
multiple copies of a value in the same register may in
fact reduce the overall probability of an error going
undetected. It is usually the case, that soft errors will
occur in bits close to each other. If the two copies of
a value are allocated contiguous registers, then the
same bits are physically closer to each other than
when a single register holds the two values. Hence,
the probability of a bit-flip in the same location may
also reduce.

3.5 Limited RBR

As discussed in the previous section, the additional
bits may have to be duplicated to make them imper-
vious to errors. To reduce the additional bits required
for the RBR technique, we investigated a limited RBR
technique where a value is considered narrow if its
significant part is 14 bits or less. In this case, each
register can either hold a normal value or 2 narrow
values and the duplicated location and wvalue bits for
the 2 values.



3.6 Dead Value Removal (DVR)

Previous studies [4, 11] have shown that a program
execution generates first-level dead values, which are
values that are over-written without being used. This
observation can be used to further optimize resource
allocation, by not allocating resources for the trail-
ing counterparts of “dead” instructions. However,
the implementation of the DVR technique will be
much more complicated than the RBR technique be-
cause of branch mispredictions and exceptions. This
is because, if the trailing counterpart of a leading in-
struction has already been declared “dead”, and the
leading instruction is found to be “not dead” because
of branch misprediction, the trailing instruction will
have to be re-activated. Hence, it cannot be guar-
anteed that a value is dead until the redefiner of the
value commits, which can only happen after both the
copies of the “dead” instruction is committed. This
will require allocation of resources to the “dead” trail-
ing instruction. However, we still investigated the
performance of the DVR technique, where resources
are not allocated to “dead” trailing instructions. We
do not discuss the detailed implementation of the
DVR technique to conserve space. We observed that
the DVR technique resulted in only about 1% im-
provement in IPC when it was used in isolation. In
combination with the RBR technique, the improve-
ment reduced to about 0.6%, because some of the
“dead” values were narrow. It is important to note
that the IPC improvements were obtained when al-
most 80-90% of the dead values were captured and
resulted in no resources being allocated to the “dead”
trailing instructions.

4 Experimental Results

4.1

The hardware parameters for our superscalar pro-
cessor are given in Table 1. Our base pipeline (for
the BST configuration) consists of 8 front-end stages.
For the DTE configuration without the RBR tech-
nique, one pipeline stage is inserted before the com-
mit stage to check the values. For the RBR tech-
nique, one pipeline stage is inserted after execution
and before writeback to check the size of the result
values. Another pipeline stage is inserted before the
register read to re-construct the correct values from
the compressed values read from the register file. In-
formation (from the ROB entry pointed to by the
replica pointer) for optimal replica register allocation
is obtained one cycle before the rename stage (in par-
allel to decode). Overall, the branch misprediction
penalty increases by 1 cycle because of the additional

Experimental Setup

pipeline stage before the register read. In addition,
additional pipeline stages further increase the regis-
ter file pressure by delaying the release of registers
(caused by delayed instructions commit).

We use a modified SimpleScalar simulator [3], simu-
lating a 32-bit PISA architecture. In our simulator,
we use a unified physical and architectural register
file where the architectural registers are committed
in the physical register file itself. Two registers are
allocated to an instruction producing a long or a dou-
ble result value (requiring 64 bits for representation).
For benchmarks, we use 6 SPEC2000 integer (vpr,
mcf, parser, bzip2, vortex, and gcc), and 9 FP
(wupwise, ammp, swim, equake, applu, art, apsi,
mgrid, and mesa) benchmarks. The statistics are col-
lected for 500M instructions after skipping the first
1B instructions.

For the RBR technique, the number of ROB, Load
buffer, and Store buffer entries for the trailing in-
structions are reduced to 32, 0, and 5 respectively.
The remaining entries are provided for the leading
instructions. Note that this distribution of entries
may not be the best possible distribution (which can
be determined empirically), because the replicas may
stall due to too few entries provided for them.

4.2 Results

Figure 5 shows the IPC results of the RBR and Lim-
ited RBR techniques, compared to DTE and DTE-
TNR configurations. As can be seen from Figure
5, IPC difference between RBR and Limited RBR
techngiues is negligible. However, RBR technique in-
creases the IPC of the DTFE configuration by about
64.4% with a maximum reaching 144% for apsi. As
expected, we observed that the techniques perform
better for benchmarks where more narrow values are
encountered. In fact, the IPC with the RBR tech-
nique is only about 2% - 77% less than the optimum
configuration of DTE-TNR.

The performance improvement obtained from the
RBR technique is not equal for all the benchmarks,
because it depends on the amount by which the pres-
sure is reduced. For the benchmarks that are register
constrained, the performance improvement obtained
from the RBR technique also depends on the type of
registers for which the pressure is reduced. For in-
stance, if a benchmark is floating-point register con-
strained and the techniques reduce the register file
pressure on the integer registers, then the techniques
are not expected to be very effective.

Figure 6 presents the stalls due to unavailability of
registers, ROB and LSB entries for DTE, DTE-TNR,



| Parameter | Value | | Parameter | Value |
Fetch/Decode/ 8 instructions FP FUs 3 ALU,
Commit Width 1 Mul/Div
Unified 128 INT/128 FP entries, Int. FUs 4 ALU, 2 AGU
Phy. Register File 2-cycle acc. lat. 1 Mul/Div

1-cycle inter-subsystem lat.

Issue Width 5/3 INT/FP instructions

Issue Queue 96 INT /64 FP Instructions

2 cycle/inter-word

Branch Predictor Gshare 4K entries BTB Size 4K entries, 2-way assoc.
L1 - I-cache 32K, direct-map, L1 - D-cache 32K, 4-way assoc.,
2 cycle latency 2 cycle latency, 2 r/w ports
Memory Latency 100 cycles first word L2 - cache unified 512K,

8-way assoc., 10 cycles

ROB size 128 leading

64 trailing

Load buffer size
Store buffer size

30 leading, 10 trailing
30 leading, 10 trailing

Table 1: Baseline Processor Hardware Parameters for the Experimental Evaluation
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Figure 5: IPCs for various configurations

and RBR configurations. Figure 6 is similar to Figure
3 in representation. As seen in Figure 6 the number
of stalls decrease for most of the benchmarks. Note
that, the stalls could also increase because of an in-
crease in the number of instructions vying for the re-
sources (due to an increase in IPC). This is the reason
for increase in stalls for some of the benchmarks.
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Figure 6: Percentage distribution of cycles with stalls
for the various configurations

Overall, for about 45% of result producing instruc-
tions of the trailing thread register allocation was
avoided, for about 50% of trailing instructions ROB
allocation was avoided, for about 50% of trailing store
instructions store buffer allocation was avoided, and
for almost 100% of the load instructions load buffer
allocation was avoided.

Power Measurements: We use the cacti tool to
perform the energy measurements for the register file,
ROB, LSB, and the additional value buffer. For the
measurements, we measure the energy consumption
for each access and the type of access and multi-
ply it by the number of such accesses obtained from
the simulations. Energy consumption in the regis-
ter file and additional value buffer (AVB) will re-
duce because for many instructions, fewer bit-lines
are activated to write and read smaller values from
the register file. Additional energy is consumed in
the additional width, location, and value bits for both
the leading and the trailing instructions. When in-
structions that share a single register commit, a single
register is read from the AVB also saving energy by
reducing the number of commit-time reads. Energy
consumption in the ROB and LSB is reduced mostly
because of fewer writes and reads from these struc-
tures. However, some of the energy saved in the LSB
is compensated by the additional broadcast and com-
pare for the trailing instructions. Figure 7 shows the
percentage savings in dynamic energy consumption
(w.r.t DTE) obtained in the register file, ROB, LSB,
and the additional value buffer, respectively. These
measurements also include the energy consumed in
the additional bits. As seen in Figure 7, about 10%
energy savings is achieved in the register file, about
25% in the ROB, about 30% in the load buffer, about
10% in the store buffer, and about 18% in the addi-
tional value buffer.
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Load Value Buffer Size: In the staggered execu-
tion model, the values loaded from the leading thread
are forwarded to the trailing thread, using a load
value buffer. The load value buffer size will depend on
the number of load instructions in the 64 instructions
by which the leading thread is ahead of the trailing
thread. In the RBR technique, if the leading load in-
struction loads a narrow value by the time its trailing
counterpart has been renamed, then the two instruc-
tions will share the same register. Hence, to reduce
the size of the load buffer required, when a leading
load instruction loads a narrow value and its trailing
counterpart has not been renamed, the value is repli-
cated in the register and no load value buffer entry
is allocated for that value. The trailing load instruc-
tion is accordingly notified. For the measurement of
the load buffer size required, we measured the av-
erage number of load instructions in the slack of 64
instructions for each benchmark. With this scheme,
we observed that the average load buffer size could
be reduced by about 46%.

Instruction Error Probability: In this section,
we measure the probability (to first order approxi-
mation) of an error being introduced in the execution
of an instruction. The approximation model is based
on the number of cycles spent by an instruction in
the pipeline, i.e. if an instruction spends more time
in the processor pipeline, the probability of an error
being induced in its execution increases proportion-
ately. Hence, we measured the average number of
cycles spent by an instruction in the pipeline for the
DTE and the RBR configurations. We observed that
the number of cycles for which a commited instruc-
tion remains in the pipeline reduces by about 33%
for the RBR configuration, suggesting that the prob-
ability of an instruction incurring an error reduces by
about 33%.

Violating the Slack In all the experiments so far,
the slack between the leading and the trailing instruc-
tions has been fixed at 64 instructions. In such situ-
ations, if the leading thread stalls due to unavailabil-
ity of resources, the trailing thread also stalls even
if it had resources available. For instance, a lead-
ing instruction stalled because of a filled load buffer
can stall a trailing instruction that does not require
a load buffer entry. Such cases become much more
prominent in the RBR technique where the trailing
instructions may not even require any additional re-
sources. Hence, we experimented with DTFE and RBR
configurations that were allowed to violate the slack
condition if the trailing instructions could go forward
with the leading instructions stalled. Figure 8 shows
that IPCs of the DTE and the RBR configurations
with and without the violating the slack condition.
It can be seen from Figure 8, that the performance
of the DTFE configuration does not improve when vi-
olation of the slack condition is allowed, whereas, the
performance of the RBR technique increases by about
1.3%.
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Figure 8: IPCs for DTE and RBR configurations with
and without slack violation

5 Sensitivity Study

The performance of the RBR technique, compared to
that of DTE, depends on the resources in the proces-
sor. We measure the IPCs of the DTFE and the RBR
techniques as the register file size is changed to 96
and 164, and the ROB size is changed to 128 and
256. In these experiments, all the other hardware
parameters remain the same. Figure 9 presents the
results for the measurements. As seen in Figure 9,
generally, increasing the number of resources reduces
the difference in IPC between the DTFE and the RBR
configurations. This is because, the resources are no
longer bottlenecks.
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Figure 9: IPCs for DTE and RBR as the Register
File and ROB sizes are varied

6 Related Work

Techniques that simultaneously execute multiple
copies of the same instructions have been proposed
for concurrent error detection and recovery [15, 1,
14, 16, 17, 21, 22, 8]. Ray, Hoe, and Falsafi [15]
use the same superscalar datapath to execute the
multiple copies of an instruction for fault-tolerance.
Austin proposes a very different fault-tolerant scheme
[1] which comprises of an aggressive out-of-order
superscalar processor checked by a simple in-order
checker processor. The fault-tolerant architectures
in [16, 17, 22, 8] use the inherent hardware redun-
dancy in simultaneous multithreading and chip mul-
tiprocessors for concurrent error detection. Patel and
Fung [14] propose transforming the input operands
between redundant computations to expose a persis-
tent fault.

Smolens et. al. [20] perform studies to measure the
performance impact of redundant execution. They
focus their studies on the issue logic and the ROB, as
they do not allocate registers to the trailing instruc-
tions. However, their techniques may be susceptible
to errors in the pipeline frontend, such as errors in
rename.

Packing multiple narrow values in a single register
for a single threaded processor has been discussed
by Oguz et. al. [13]. However, they have to use
speculation techniques to decide whether to pack the
result or not. Such speculative techniques can have
a significant misspeculation penalty. The techniques
discussed in this paper are non-speculative because
when running the trailing thread at a slack, the in-
formation from the leading thread is readily available
and can be exploited.

Shubhendu, et. al. [11] suggest that “dead” values re-
duce the vulnerability of an architecture to soft fail-
ures. However, they do not explore the possibility

of utilizing the “dead” values to improve the perfor-
mance of a reliable processor. Eliminating dynami-
cally dead instructions from the execution stream has
been studied for a single thread in [4].

7 Conclusion

Reliability in systems is usually ensured by corrob-
orating the results of redundant threads, where the
one thread runs ahead of the other thread by a few
instructions. Redundant threads place a significant
pressure on the processor resources, especially the
register file, ROB, and LSB, thus impacting the per-
formance.

In this paper, we investigate techniques that attempt
an optimal allocation of resources to instructions of
the trailing thread. The techniques in this paper are
based on 2 very important observations: (i) many
of the values produced in a processor are of small
size, and (ii) if the one thread is running behind
the other by a few instructions, then the leading in-
structions usually produce their results before their
trailing counterparts are renamed. The register bits
reuse technique exploits the narrow width of the re-
sults produced in a program, and attempts to allocate
a single register to both copies of an instruction, if
the result produced by the instructions is of narrow
width. We also discussed detailed implementations
of the technique. To enhance the number of narrow
width values produced in a program, we propose a
novel way of defining a narrow value as one that has
either leading or trailing zeros or ones. The RBR
technique is extended to also avoid the allocation of
ROB entries for many trailing instructions. Innova-
tive scheme is also proposed to resue the load/store
buffer hardware to avoid allocation of LSB entries to
all the loads and about 50% of the stores of the trail-
ing instructions

We observed that the register bits reuse technique
produces about 64.4% performance improvement
over the base case running one redundant thread for
concurrent error detection. The power consumption
reduces by about 10-30% in the various hardware
structures.
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