
Appears in the Proceedings of Design, Automation and Test in Europe Conference, March 2002

AccuPower: An Accurate Power Estimation Tool for

 Superscalar Microprocessors*

Dmitry Ponomarev, Gurhan Kucuk and Kanad Ghose
Department of Computer Science

State University of New York, Binghamton, NY 13902–6000
e–mail:{dima, gurhan, ghose}@cs.binghamton.edu

http://www.cs.binghamton.edu/~lowpower

Abstract

This paper describes the AccuPower toolset – a set of
simulation tools accurately estimating the power
dissipation within a superscalar microprocessor.
AccuPower uses a true hardware level and cycle level
microarchitectural simulator and energy dissipation
coefficients gleaned from SPICE measurements of actual
CMOS layouts of critical datapath components. Transition
counts can be obtained at the level of bits within data and
instruction streams, at the level of registers, or at the level
of larger building blocks (such as caches, issue queue,
reorder buffer, function units). This allows for an accurate
estimation of switching activity at any desired level of
resolution.

The toolsuite implements several variants of
superscalar datapath designs in use today and permits the
exploration of design choices at the microarchitecture level
as well as the circuit level, including the use of voltage and
frequency scaling. In particular, the AccuPower toolsuite
includes detailed implementations of currently used and
proposed techniques for energy/power conservations
including techniques for data encoding and compression,
alternative circuit approaches, dynamic resource
allocation and datapath reconfiguration. The
microarchitectural simulation components of AccuPower
can be used for accurate evaluation of datapath designs in
a manner well beyond the scope of the widely–used
Simplescalar tools.

1. Introduction

It has been recognized by the processor design
community that power dissipation is a first–class
architectural design constraint not only for portable
computers and mobile communication devices, but also for
high–performance superscalar microprocessors [10]. A fair
amount of research efforts have been directed towards
reduction of power dissipation in this high–end systems.
Proposed solutions include both microarchitectural and
circuit–level techniques.

* supported in part by DARPA through contract number
FC 306020020525 under the PAC–C program, and the NSF
through award no. MIP 9504767 & EIA 9911099.

Several power estimation tools for processors have
been designed, including Wattch [2], Simplepower [15]
and TEM2P2EST [4] to name a few. Simplepower is used
only for simple 5–stage scalar pipelines and only models
the execution of integer instructions; it is not applicable to
superscalar processors. The major drawback of other tools
is their reliance on the Simplescalar simulator [1], which
lumps many critical datapath artifacts like the issue queue
(IQ), the reorder buffer (ROB) and physical register files
(PRFs) into a unified structure called Register Update Unit
(RUU), quite unlike the real implementations, where the
number of entries and the number of ports in all these
structures are quite disparate. Consequently, power
dissipation can not be estimated accurately on a
per–component basis. Considering that in many cases,
these components collectively contribute to more than half
of the overall power dissipation of the chip [5, 12], it is
necessary to have facilities that allow the design space of
these components and their interactions be modeled as
accurately as possible. This is exactly one of the areas
where AccuPower provides a more accurate simulation and
power estimation framework than existing public domain
tools.

Needless to say, accurate power estimation tools are
available within the organizations of individual
microprocessor vendors for specific architectures, but they
are not available to the public and/or their distribution is
limited. Examples of such tools include IBM’s MET and
its associated power estimation components for a Power PC
implementation and Compaq’s ASIM tool for simulating
and estimating transition activity within Alpha processor
implementations [3]. Tensilica’s OEM–customizable
Xtensa core comes with a power estimation tool that
provides reasonably accurate power estimation for
customized datapaths. Other power estimation tools,
mainly targeting relatively simple embedded CPUs have
also been developed, such as the one in [7].

Specifically, the main features of the AccuPower
toolset are as follows:
• Accupower uses detailed cycle–level simulation of all

major datapath components and interconnections that
mimic the actual hardware implementation, including
separate and realistic implementations of the issue
queue, register files, ROB, load–store queue and
forwarding mechanisms.

• Detailed and accurate simulations of the on–chip cache
hierarchy (including multiple levels of on–chip caches,
interconnections, arbitration and chip–level I/O traffic)
are an intrinsic part of AccuPower.

• A significant part of a modern processor’s power
dissipation can occur in the I/O pads. Collectively,
CPU–internal interconnections for explicit data
transfers and forwarding and the clock distribution
network are also significant sources of power
dissipation within superscalar processors. AccuPower
models these interconnections in great detail, including
the connections themselves as well as associated ports
on datapath components and drivers.

• The AccuPower tool supports built–in models for three
major variants of superscalar datapaths in wide use.

• AccuPower includes well–instrumented facilities for
collecting datapath statistics of relevance to both power
and performance at the level of bits, bytes (for data and
instruction flows) within logic blocks and
subsystem–level components and the entire processor.

• Implementations of cutting–edge techniques for power/
energy reduction at the microarchitectural level, at the
logic level and circuit level, as well as techniques based
on clock gating, voltage and frequency scaling to
facilitate the exploration of the design space are
included in AccuPower.

• AccuPower uses energy/power dissipation coefficients
associated with the energy dissipating events within
each key datapath component and the interconnections.
These are combined with the transition counts obtained
form the microarchitectural simulation component to
get the overall energy/power dissipation figures. The
coefficients could be estimated analytically from
process–specific electrical parameters by adapting
tools such as CACTI [15]. A more accurate approach,
and one also supported in Accupower is to derive these
coefficients from SPICE measurements of actual
layouts of these components. The Accupower toolkit
includes representative VLSI layouts of some key
datapath components and the dissipation coefficients
estimated using SPICE for these components.
Coefficients for leakage dissipations are also provided.

We believe that short of an actual implementation,
AccuPower’s power estimation strategy, based on
SPICE–measured dissipation coefficients and detailed
cycle–by–cycle, true hardware level simulation, is as
accurate as it gets. As part of an ongoing effort, we are also
in the process of validating the energy dissipation
coefficients of critical datapath components from actual
subscale implementations through MOSIS. A release of the
AccuPower toolset, including the VLSI layouts and
SPICE–measured data is planned for in the near future. The
planned release will also incorporate models for
multi–clustered datapaths; this feature is being
implemented in AccuPower at this point.

2. Variants of Modern Superscalar Datapaths
Three variations of superscalar datapaths are

predominantly in use in modern implementations. They
mainly differ in two respects: how the physical registers are
implemented and when the readout of the source physical
registers occurs.
Datapath A (Figure 1): Here, input registers that contain
valid data are read out while the instruction is moved into
the IQ. As the register values required as an input by
instructions waiting in the IQ (and in the dispatch stage) are
produced, they are forwarded through forwarding buses
that run across the length of the IQ [11]. The issue queue

����

����

����� ��	
 	��
���

�

Instruction
dispatch

Instruction issue

�	�

��������� �����

��

Result forwarding buses

��������� ��������� ����

	 ! "	�

Figure 1. Datapath A

"������������
�������������

entry for an instruction has one data field for each input
operand, as well as an associated tag field that holds the
address of the register whose value is required to fill the
data field. When a function unit completes, it puts out the
result produced along with the address of the destination
register for this result on a forwarding bus. Comparators
associated with each IQ entry then match the tag values
stored in the fields (for waited–on register values) against
the destination register address floated on the forwarding
bus [11]. On a tag match, the result floated on the bus is
latched into the associated input field. Since multiple
function units complete in a cycle, multiple forwarding
buses are used; each input operand field within a IQ entry
thus uses a comparator for each forwarding bus. Examples
of processors using this datapath style are the IBM Power
PC 604, 620 and the HAL SPARC 64 [9].
Datapath B (Figure 2): Here, even if input registers for an
instruction contain valid data, these registers are not read
out at the time of dispatch. Instead, when all the input
operands of an instruction waiting in the IQ are valid and
a function unit of the required type is available, all of the
input operands are read out from the register file (or as they
are yet to be written to the register file, using bypassing
logic to forward data from latter pipeline stages) and the
instruction is issued. In this case, the IQ entry for an
instruction is considerably narrower compared to the IQ
entries for Datapath A, since entries do not have to hold
input register values. The dispatch/issue logic can be
implemented using a global scoreboard that keeps track of
instructions and register/FU availability. Alternatively, an
associative logic similar to that of Datapath A can be used
to update the status of input registers for instructions
waiting within the IQ (as shown in Figure 2). Examples of

processors using this datapath style are the MIPS 10000,
MIPS 12000 and the DEC 21264 [9].

����

����

����

� ��	
 	��
���

�

�����������

#��$����

Instruction issue

�	�

�� Status update

	 !

!�$��� ������

"	�

Figure 2. Datapath B

����������������������� ��������� ����

"������������
��������� ����

Datapath C (Figure 3): Here, the ROB entry set up for an
instruction at the time of dispatch contains a field to hold
the result produced by the instruction – this serves as the
analog of a physical register. We assume that each ROB
entry may hold only 32–bit long result, thus requiring the
allocation of two ROB entries for an instruction producing
a double–precision value. A dispatched instruction
attempts to read operand values either from the
Architectural Register File (ARF) directly (if the operand
value was committed) or associatively from the ROB (from
the most recently established entry for an architectural
register, in case the operand value was generated but not
committed. Source registers that contain valid data are read
out into the IQ entry for the instruction. If a source operand
is not available at the time of dispatch in the ARF or the
ROB, the address of the physical register (i.e., ROB slot) is
saved in the tag field associated with the source register in
the IQ entry for the instruction. Forwarding to the waiting
IQ slots is performed similar to Datapath A. Examples of
processors using this datapath style are the Intel Pentium II
and Pentium III. [9]. Two variants of Datapath C are
implemented: one where a rename table is used to look up
source operands from the ROB and another where
associative searching is used to locate the most recently
generated value into an architectural register from the
ROB.

Instruction
dispatch ����

����

����

� ��	
����

�

Instruction issue

��������
�����

��

Result forwarding
buses

	 !�
�	�

"	�

Figure 3. Datapath C

3. Implementation
The AccuPower tool consists of the three components:

a microarchitectural simulator, which is a greatly modified
version of the Simplescalar; the VLSI layouts for major
datapath components and caches in a 0.5micron process;
and power estimation module that uses coefficients
obtained from the SPICE simulations in conjunction with
transition counts obtained from the microarchitectural
simulator to compute energy/power. (The public release
planned will use 0.18 and 0.25 micron layouts as well.)
Figure 4 summarizes the overall power/energy estimation
methodology used in AccuPower.

3.1 Microarchitectural Simulators
To support the three superscalar datapath

configurations discussed in section 2, we significantly
modified the Simplescalar simulator [1] and implemented
separate structures for the IQ, the ROB, the rename table,
the physical register files and the architectural register files.
Three versions of the simulator were designed – one for
each datapath configuration discussed above. We also
accurately modeled the pipeline structures and various
interconnections within the datapath, namely the dispatch
buses, issue buses, result buses and commit buses. In a
typical superscalar processor, multiple sets of such buses
are needed to sustain the dispatch/issue/commit rate.
Traffic on each such bus and read/write activity within the
register files implementing the datapath storage
components are separately monitored and analyzed as
discussed later.

The extent of our modifications to the Simplescalar
can be gauged by the fact that barely 10% of the original
code was retained. The sim–outorder.c file was completely
rewritten (with the exception of the fetch stage) to support
a true cycle–by–cycle out–of–order instruction execution.
This is in contrast to the original Simplescalar code, where
instructions are actually executed in–order at the dispatch
stage and the effects of out–of–order execution are
implemented through the convoluted manipulations with
the RUU. Significant modifications have also been
incorporated into the cache simulator, as discussed below.
Specifically, the changes that were made to the
Simplescalar to simulate the realistic superscalar pipelines
are as follows:

(i) We split the monolithic cache access stage as used in
Simplescalar into two stages to mimic the real–world
situation where cache accesses – even L1 cache accesses –
are typically performed in multiple cycles and provided a
support for pipelined cache.

(ii) We modeled the contention for the bus between L1 and
L2 caches. This is important because the L1 caches are
typically split with separate caches for instructions and
data. L2 cache, however, is typically unified. Situation
when both I1 miss and D1 miss occur in the same cycle are
certainly possible and they require proper modelling to
arbitrate for the access to the L2 cache.

(iii) Along similar lines, we modelled the contention for the
off–chip interconnection from the L2 cache to the DRAM
modules.

(iv) The decode stage of the Simplescalar datapath, where
instruction dispatching and register renaming is performed,
was split into two stages, as it is unrealistic to perform the
fairly complicated operations of dispatching, register
renaming and source register readout in a single cycle.

(v) We also assumed realistic delays on the
interconnections, noting that it takes a full cycle to
distribute the result produced by one of the FUs to the
waiting operands in the issue queue (Datapaths A and C).

To summarize, we attempted to design a simulator that
would closely mimic the actual microarchitecture and
hardware implementations of real CPUs on a
cycle–by–cycle basis. The focus of the AccuPower tool is
to facilitate the exploration of the design space of
superscalar processors and gauge the impact of well–used
and cutting–edge techniques for saving power and/or
energy. The tool also supports the exploration of
circuit–level techniques and the more standard power
reduction techniques like voltage and frequency scaling.

3.2 Choosing the Estimation Accuracy

AccuPower offers the user several flexibilities in
controlling the accuracy of the power estimation and the
simulation time. The accuracy of the power estimations is
a function of the detail with which transition counts are
obtained and also a function of the accuracy of the
dissipation coefficients used in the computation of the
energy/power. Where the accuracy requirements are not
exacting, facilities are provided for turning down the extent
of transition counting. As examples, one can turn off
detailed transition counting at the level of bits, occupancy
counting within resources such as the IQ, ROB, and
transition counting within datapath components not of
interest.

In addition to having a control over the extent of
transition counting as described above, it is useful to have
a choice on the accuracy of the dissipation coefficients
used. For the best accuracy, coefficients obtained from
SPICE measurements of actual VLSI layouts can be used.
This is clearly not a viable approach for exploring the entire
design space, as layouts have to be altered with each
technology generation and with each variation in the
implementation. The AccuPower infrastructure therefore
offers an alternative in the form of parameterized models
of energy dissipation for major datapath components. The
parameters used include the word size, number of
words/registers, number of ports etc. The parameterized
models are used to get an approximate idea of the
dissipation coefficients that have to be used when
different–sized components are required. The base case
values to use in these parameterized models can come from
SPICE measurements of actual layouts for the base case or
by analytically estimating the capacitive coefficients using

technology parameters based on a good idea of the layout.

3.3 VLSI Layouts: Getting Accurate Coefficients

For accurately estimating the energy/power for the key
datapath components and power of a processor as a whole
using AccuPower, the transition counts and event
sequences gleaned from the microarchitectural simulator
are used, along with the energy dissipations for each type
of event, as measured from the actual VLSI layouts using
SPICE. CMOS layouts for the on–chip caches, IQ, PRF,
ARF and ROB in a 0.5 micron 4 metal layer CMOS process
(HPCMOS–14TB) were used for the key datapath
components to get an accurate idea of the energy
dissipations for each type of transition. We are in the
process of migrating these layouts to a 0.18 micron process.
The results for the 0.5 micron layouts are, however, quite
representative, although greatly scaled down compared to
what one would see with 0.18 micron implementations
running at a faster clock rate! The exception to this claim
are the wire dissipations outside these components.
(Dissipations on such wires at small feature sizes become
relatively dominant.)

The register files that implement the ROB and IQ were
carefully laid out in the 0.5 micron process to optimize the
dimensions and allow the use of a 300 MHz clock. A Vdd
of 3.3 volts is assumed for all the measurements. (The
value of the clock rate was constrained by the cache cycle
time, as determined by the cache layouts for a two–stage
pipelined cache in the same technology.) In particular,
these register files feature differential sensing, limited bit
line driving and pulsed word line driving to save power.
Augmentations to the register file structures for the IQ
(mainly in the form of comparators with each of the 3
source operand fields and the four result/tag buses) are also
fully implemented; a pulldown comparator is assumed for
associative data forwarding to entries within the IQ and the
device sizes were carefully optimized to strike a balance
between the response speed and the energy dissipations.
For each energy dissipating event, SPICE measurements
were used to determine the energy dissipated. These
measurements are used in conjunction with the transitions
counted by the hardware–level, cycle–by–cycle simulator
to estimate dynamic energy/power accurately. Actual
layout data was also used for estimating the leakage power
of the layouts in the smaller feature sizes.

3.4 Speeding up the Execution – Multithreading

The instrumentation needed to determine the bit level
activities within data flow paths and data storages (both
explicit and implicit) and log all major switching activities
slows down the simulation drastically. To get a reasonable
overall simulation performance with all the
instrumentation in place, we resorted to the use of
multithreading. Specifically, we use a separate thread for
the data stream analysis, as shown in Figure 4. The
two–threaded implementation is run on SMPs to get an
acceptable simulation speed. The data acquired from basic

instrumentation within the main simulation thread is
buffered and fed into a separate thread where it was further
analyzed.

With a single thread implementing all of the
simulation, instrumentation and analysis, the overall
simulation speed was reduced by as much as 40% compared
to the original Simplescalar simulation without any
modification and instrumentation. With both threads in
place as shown in Figure 4, and with the use of inter–thread
buffers of an optimized size, the overall simulation time
achieved was often significantly better on a SMP compared
to the single–threaded implementation. The performance
of the dual–threaded version was also acceptably close to
that of the original Simplescalar simulator without any of
the enhancements and the instrumentation.

A public release of AccuPower is planned in the very
near future. Validations of the SPICE–measured data from
MOSIS–supported implementations of some critical
datapath components are also planned as part of an ongoing
effort.

Compiled
benchmarks

Datapath
specs

SPICE measures of energy per transition/event

MICROARCHITECTURAL

SIMULATOR

Power/energy

stats

Performance stats

VLSI Layouts
SPICE

Transition counts,
context information

Data analyzer/

Intra–stream analysis

Two separate threads

SPICE decks

ENERGY/

POWER

ESTIMATOR

Inter–thread
Buffers

Figure 4. Power Estimation Methodology

4. Using AccuPower
AccuPower can be used to obtain realistic

measurements pertaining to power and performance in a
variety of ways. These include:

1) Raw data collection. This falls into two categories:

a) The tool monitors the bit–level datapath activity on the
interconnections, dedicated transfer links, and read/write
activity of the register files that implement the datapath
storage components. We also provide the data analyzer
(implemented as a separate thread for performance reasons,
as discussed above) to examine the collected data streams
on the presence of zero–bytes. Presence of zero bytes has
been exploited to reduce the switching activity and hence
power dissipations in caches [11] and in other datapath

components [6]. In addition, the data analyzer estimates the
percentage of bits that did not change their values since the
previous value had been driven on the same link.
Considerable power savings can be achieved on the
datapath interconnections by not driving such bits. [6]. To
further reduce the number of bits driven on the
interconnections, such bit–slice invariance can be used on
top of zero–byte encoding. Representative resulting
percentages of bits that do not have to be driven on the
datapath interconnections are shown for Datapaths A and
B in Figures 5 and 6 respectively.

Í
Í
Í
Í

Í
Í
Í
Í

Í
Í
Í
Í

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ
ÍÍ

Í
Í
Í

Í
Í
Í
Í%

�%

&%

'%

(%

�%%

�(()��� �*$�� ���+,# �$$$$

Figure 5. % of bits not driven using bit–slice invariance on
top of zero byte encoding for Datapath A

���$�����!�� ������!��

����-������-� "./

0

	������!��
ÍÍ
ÍÍ1������!��

Í
Í
Í
Í

Í
Í
Í

Í
Í
Í

ÍÍ
ÍÍ
ÍÍ

ÍÍ
ÍÍ
ÍÍ

Í
Í
Í

Í
Í
Í%

�%

&%

'%

(%

�%%

�(()��� �*$�� ���+,# �$$$$

Figure 6. % of bits not driven using bit–slice invariance on
top of zero byte encoding for Datapath B

���$�����!�� ������!��

����-������-� "./

0

	������!��Í
Í

1������!��

b) In AccuPower, the occupancies of individual datapath
resources, as measured by the number of valid entries, are
monitored and recorded. This capability is currently
implemented for the IQ, the ROB, and the LSQ. Support for
caches will be added in the near future. Figure 7 shows the
occupancies of the IQ, the ROB, and the LSQ obtained
from the execution of fpppp benchmark on AccuPower
simulator. Resource occupancies are recorded at every
cycle and the averages have been taken for every 1 million
of simulated cycles. This occupancy statistics can be used
to drive the decision to dynamically allocate datapath
resources depending on the application’s needs. For
example, if sampling of the resource occupancy indicates
that the resource is currently overcommitted, some parts of
this resource can be temporarily turned–off thus saving
power dissipated within this resource. Such dynamic
resizing of multiple datapath resources with minimal
impact on performance has been studied in [12].
Representative results are shown in Figure 8. AccuPower
is the only currently available power estimation tool that
allows to measure the occupancies and the datapath

resource usages in general independently and thus explore
microarchitectural techniques that exploit occupancy
variations for power savings.

Figure 7. The occupancies of the ROB, the DB & the LSQ

0

20

40

60

80

181 201 221 241 261

DB occupancy
LSQ occupancy

simulation cycles (millions)

ROB occupancy

oc
cu

pa
nc

y

%

�%%%

�%%%

,%%%

&%%%

2%%%

��
�
$�
��
�

-�
���
3

�
((
)�
��

��
�

��

�*$
��

$�
�� ���
$

��
��"
-�

Figure 8. Total power dissipation within the ROB for a
4–way superscalar processor. (Datapath C)

!�������� ��������	 !�"���������

�4

�

4
�
	

�
�
�"
-�

"
-�
��
��

��
�+
,#

�$
$$
$

�$
��

�$
$�
�

��
#�
��
#

�
��
�#

��
��
��

�5
��

��
�
��
�-

5
�-
�2

Í
Í
Í
Í
Í
Í
ÍÍ
ÍÍ

Í
Í
Í
Í
ÍÍ
ÍÍ

Í
Í

Í
Í

%

�%%

&%%

'%%

(%%

�%%%

���$���� -����3 �(()��� ��� �� �*$�� $��� ���$ ����"-�

Figure 9. Total power dissipation within DB using bitline
segmentation, power efficient comparators and zero–byte
encoding (ZBE). (Only SPEC95int results for datapath A are
shown)

!�������� ������������

������������67!�ÍÍ�������������6�7!��6���5����$������

�4

�

4
�
	

2) Accurate datapath component–level power
estimation. Here, we use transition counts obtained from
the architectural simulation in conjunction with the
capacitance coefficients obtained from SPICE simulations.
Figures 8 and 9 represent some typical measurements.

3) Exploration of various power reduction techniques.
These include the use of zero–byte encoding (ZBE) [13],
dynamic resource allocation using occupancy sampling
[12] and the use of partitioned datapath components [16].
Figures 5, 6 and 8 show some representative measurements.

4) Exploration of alternative circuit–level techniques.
These currently include the use of fast dissipate–on–match
comparators for associative lookup within the IQ, the ROB
and the TLB, bit–line segmentation within register files and
zero–byte encoding [8]. Figure 9 demonstrates the
representative savings, as measured by AccuPower.

5) Explorations of alternative datapath architectures. As
mentioned above, three datapath configurations are
currently supported. Figures 5 and 6 can be used to compare
the bit–slice inactivities in Datapaths A and B.

5. Conclusions
This paper presented AccuPower – an accurate

simulation tool for estimating power dissipation within
various flavors of modern superscalar datapaths on a
per–component basis. AccuPower consists of
microarchitectural simulator in the form of significantly
redesigned version of the Simplescalar simulator, the actual
VLSI layouts for the key components of a superscalar
processor, parameterized dissipation models and a
power/energy estimator module. AccuPower can be used to
estimate power savings achieved by several proposed
microarchitectural and circuit–level techniques and also to
study the impact of microarchitectural innovations in
general. A variety of superscalar datapath models are built
into AccuPower to facilitate such studies.

6. References:
[1] Burger, D., and Austin, T. M., “The SimpleScalar tool set:
Version 2.0”, Tech. Report, Dept. of CS, Univ. of
Wisconsin–Madison, June 1997 and documentation for all
Simplescalar releases (through version 3.0).
[2] Brooks, D., Tiwari, V., Martonosi, M., “Wattch: A Framework
for Architectural–Level Power Analysis and Optimizations”, 27th
International Symposium on Computer Architecture, 2000.
[3] Compaq Computer Corporation, The ASIM Manual, 2000.
[4] Dhodapkar, A., Lim, C., Cai, G., Daasch R, “TEM2P2EST: A
Thermal Enabled Multi–Model Power/Performance ESTimator”, in
PACS Workshop, held in conjunction with ASPLOS, 2000.
[5] Folegnani, D., Gonzalez, A., “Energy–Effective Issue Logic”,
28th Int’l. Symposium on Computer Architecture, July, 2001.
[6] Ghose, K., Ponomarev, D., Kucuk, G., Flinders, A., Kogge, P.,
and Toomarian N.,“Exploiting Bit–slice Inactivities for Reducing
Energy Requirements of Superscalar Processors,” in Proc. of Kool
Chips Workshop, Micro–33, 2000.
[7] Hsieh, C–T., Chen, L–S, and Pedram, M., “Microprocessor
Power Analysis by Labeled Simulation”, in Proc. DATE ’01.
[8] Kucuk, G., Ghose, K., Ponomarev, D., Kogge, P.,
“Energy–Efficient Instruction Dispatch Buffer Design for
Superscalar Processors”, ISLPED–01, pp. 237–242.
[9] Microprocessor Report, various issues, 1996–2001.
[10] Mudge, T., “Power: A First–Class Architectural Design
Constraint”, IEEE Computer, April 2001, pp. 52–58.
[11] Palacharla, S., Jouppi, N. P. and Smith, J.E., “Quantifying the
complexity of superscalar processors”, Technical report
CS–TR–96–1308, Dept. of CS, Univ. of Wisconsin, 1996.
[12] Ponomarev, D., Kucuk, G., Ghose, K., “Reducing Power
Requirements of Instruction Scheduling Through Dynamic
Allocation of Multiple Datapath Resources”, 34th International
Symposium on Microarchitecture, December, 2001, pp. 90–101.
[13] Villa, L., Zhang, M. and Asanovic, K., “Dynamic Zero
Compression for Cache Energy Reduction”, 33rd International
Symposium on Microarchitecture, December, 2000.
[14] Vijaykrishnan, N., Kandemir, M., Irwin, M.J. et al,
“Energy–Driven Integrated Hardware–Software Optimizations
Using SimplePower”, 27–th International. Symposium on
Computer Architecture, pp.95–106.
[15] Wilton, S., and Jouppi, N., “An Enhanced Access and Cycle
Time Model for On–Chip Caches”, WRL Research Report 93–5,
DEC WRL, 1994.
[16] Zyuban, V. and Kogge, P., “Optimization of High–Performance
Superscalar Architectures for Energy Efficiency”, in Proc. of
ISLPED, 2000, pp. 84–89.

