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Abstract

We present a technique for reducing the power
dissipation in the course of writebacks and committments
in a datapath that uses a dedicated architectural register
file (ARF) to hold committed values. Our mechanism
capitalizes on the observation that most of the produced
register values are short–lived, meaning that the
destination registers targeted by these values are renamed
by the time the results are written back.  Our technique
avoids unnecessary writebacks into the result repository (a
slot within the Reorder Buffer or a physical register) as well
as writes into the ARF by caching (and isolating)
short–lived operands within a small dedicated register file.
Operands are cached in this manner till they can be safely
discarded without jeopardizing the recovery from possible
branch mispredictions or reconstruction of the precise state
in case of interrupts or exceptions. The power/energy
savings are validated using SPICE measurements of actual
layouts in a 0.18 micron CMOS process. The energy
reduction in the ROB and the ARF is in the range of
20–25%  and this is achieved with no increase in the cycle
time, little additional complexity and no IPC drop.

1.  Introduction

Traditional high–end microprocessor designs were
driven mainly by performance considerations until very
recently.  With a steady increase in the number of transistors
in the implementation of these processors along with the
use of faster clock frequencies, power and energy
considerations have emerged as additional design drivers
for current high–end processors.  In addition to the problem
of coping with the large total power dissipations of a
high–end processor, the designer also needs to deal with hot
spots – localized areas of very high energy/power
dissipations – within the processor die.  High operating
temperatures,  especially within the processor’s hot spots,
also significantly reduce lifetime and reliability of the
integrated circuits because several silicon failure
mechanisms, such as electromigration, junction fatigue,
and gate dielectric breakdown are exacerbated at high
temperatures [25].  It is therefore imperative to operate
these devices at safe temperatures to ensure their long life
and reliable performance.  Efficient packaging and cooling

solutions, costing about $1 to $3 per Watt of power
dissipated by the processor [24], continue to be used for
coping with the increasing power dissipations in
contemporary high–end processors, along with a variety of
solutions that are at the level of the devices as well as at
circuit, microarchitecture and system levels.

Most of today’s high–performance microprocessors
are implemented using dynamic out–of–order superscalar
designs. These machines harvest available
instruction–level  parallelism (ILP) in sequential programs
by exploiting a variety of techniques such as dynamic
instruction scheduling, register renaming and speculative
execution.  The additional complexities introduced at the
microarchitectural  level for implementing these techniques
greatly contribute to the increasing levels of power
dissipation. In this paper, we introduce a
technology–independent,  microarchitecture–level solution
for mitigating this increasing complexity without any
performance loss and with a marked savings in the power
dissipation in some key components of a modern
superscalar processor.

In high–end superscalar processors, instructions are
scheduled for execution dynamically, possibly
out–of–order, as their source operands are produced.  Data
dependencies are usually handled by register renaming,
where destination architectural registers are renamed to
physical registers, with a new physical register allocated for
every new result targeting an architectural register. Control
dependencies are overcome through branch prediction and
aggressive speculative execution along the predicted paths.
A reorder buffer (ROB) is used to implement a precise state
for interrupt handling [19] and also to squash the
instructions along the mispredicted paths.

In some implementations, the ROB is also used as the
repository of the results, where the ROB slot allocated for
an instruction is itself used as the destination physical
register.  The Intel P6 microarchitecture (used by the
Pentium II and III processors) typify such a datapath [10].
A variation of this datapath uses a dedicated physical
register, called a rename buffer, to implement the physical
result repositories.  The IBM Power PC 604 uses this
variation of the out–of–order execution datapath [18].  A
common feature of these two designs is the presence of a
separate register file (ARF) to hold the committed register
values, requiring the movement of a result from the ROB
(or rename buffer) to the ARF in the course of instruction
commitment.   In the rest of the paper, we consider the



implementation,  where physical registers are directly
implemented by the ROB slots.  The proposed technique is
also applicable to a processor with the rename buffers.

Figure 1 depicts a grossly simplified version of a
datapath where the ROB slots are used to implement
physical registers. This figure only shows the datapath
details that are relevant for this study. Forwarding
interconnections  as well as the connections needed for
accessing the load–store queue and the data cache are not
shown.  The speculative results produced by the execution
units (EX) are written into the ROB slots and
simultaneously forwarded to dispatched instructions
waiting in the Issue Queue (IQ).  We assume that each IQ
entry holds the actual source operand values in addition to
the source tags. To enable back–to–back execution of
dependent instructions, the result tags are broadcast before
the actual data. If a source operand is available at the time
of instruction dispatch, the value of the source register is
read out from the most recently established entry of the
corresponding architectural register. This entry may be
either an ROB slot or the architectural register itself.  If the
result is not available, appropriate forwarding paths are set
up. The result values are committed to the ARF in program
order at the time of instruction retirement.  
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Figure 1.  A P6–style superscalar datapath

The typical implementation of a ROB is in the form of
a large, multi–ported register file.  A significant amount of
power is consumed in the course of result writebacks to the
ROB (in the form of writes to the register file implementing
ROB) and the commitments of these results from the ROB
to the ARF (in the form of reads from the ROB and writes
to the ARF).  Some studies indicate that a ROB serving as
a repository of non–committed results contributes a
significant percentage to the overall chip power
consumption [6].  In this paper, we propose a mechanism
for reducing the power of the ROB and the ARF without
impacting the performance of the processor. Our technique
exploits the notion of short–lived operands – values
targeting architectural registers that are renamed by the
time the instruction producing the value reaches the
writeback stage.

The simulations of the SPEC 2000 benchmarks show
that as much as 71% to 97% of the results are short–lived.
Note that our definition of the short–lived variables is

different from the one used by Lozano and Gao in [13],
where they define the variable to be short–lived if the value
is consumed by all dependent instructions during its
residency in the ROB. Our definition of short–lived
variables is thus more restrictive than the one used in [13],
especially for large ROBs, typical of current
implementations.  Our technique avoids unnecessary
writebacks into the result repository (a  slot within the ROB
or a physical register) as well as writes into the ARF from
unnecessary commitments by caching (and isolating)
short–lived operands within a small dedicated register file.
Short–lived operands are held in this dedicated register
storage until they can be safely discarded without
compromising a precise state reconstruction or a recovery
from a possible branch misspeculation.

The rest of the paper is organized as follows. We
quantify the percentage of short–lived values and show how
these values can be identified in Section 2.  The details of
our technique for isolating short–lived values are presented
in Section 3.  Our simulation methodology is described in
Section 4 and we present and discuss the simulation results
in Section 5. Section 6 reviews the related work and we
offer our concluding remarks in Section 7.

2. Identifying short–lived operands

We begin by showing that a large percentage of all
generated results are short–lived. We then explain how
these short–lived values can be identified and used for
energy minimization. The extensions needed in the
datapath for the identification of short–lived operands are
very simple and are similar to what is used in [14] and [15]
for early register deallocation and in [2] for moving the data
between the two levels of the hierarchical register file. We
maintain a bit vector, Renamed, with one bit for each ROB
entry. An instruction that renames destination architectural
register X (in the rest of the paper we call such an instruction
the Renamer) sets the Renamed bit of the ROB entry
corresponding to the previous mapping of X, if that
mapping indicates an ROB slot. If, however, the previous
mapping was to the architectural register itself – i.e., to a
committed value, no action is needed because the
instruction that produced the previous value of X had
already committed. These two cases are easily
distinguished by maintaining the additional bit within each
entry in the RAT. Renamed bits are cleared when the
corresponding ROB entries are deallocated. At the end of
the last execution cycle, each instruction producing a value
checks the Renamed bit associated with its ROB entry. If the
bit is set, then the value to be generated into the entry is
identified as short–lived.

Figure 2 depicts the process of identifying the
short–lived values. The instruction ADD renames the
destination register (R1) previously written by the
instruction LOAD. So, the ADD acts as a Renamer for the
LOAD. Assume that the ROB entries numbered 31 and 33
are assigned to the instructions LOAD and ADD
respectively. When the ADD is dispatched, it sets the
Renamed bit corresponding to the ROB entry 31 (the
previous mapping of R1), thus hinting that the value



produced by the LOAD could be short–lived. When the
LOAD reaches the writeback stage, it examines
Renamed[31] bit and identifies the value it is about to
produce as short–lived.  Notice, however, that the
indication put by the ADD is just a hint and it does not
necessarily imply that the value produced by the LOAD
will be identified as short–lived.  For example, if the LOAD
had already passed the writeback stage by the time the ADD
set the value of Renamed[31] bit, then the LOAD would
have not seen the update performed by the ADD and the
value produced by the LOAD would not have been
identified as short–lived.

Figure 2.  Identifying short–lived values

LOAD R1, R2, 100
SUB R5, R1, R3
ADD R1, R5, R4

LOAD P31, R2, 100
SUB P32, P31, R3
ADD P33, P32, R4

Renamed

31

1

Original code Renamed code

0 ROB_size–1

On the average across the subset of the SPEC 2000
benchmarks, about 87% of all produced values were
identified as short–lived in our simulations, ranging from
97% for bzip2 to 71% for perl. Details of our simulation
framework are given in Section 4.  Figure 3 shows the
percentages of short–lived result values, identified as
described, for the individual benchmarks.  As detailed in
Section 4, our simulations were performed for the pipeline
with modest number of stages. As the number of pipeline
stages between register renaming and writeback will
increase in future implementations, the percentage of
short–lived results will also increase commensurately.
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Figure 3.  Percentage of short–lived values
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While it was reported by other researchers [13] that
short–lived values comprise a very large percentage of all
generated results, our definition of short–lived operands is
more restrictive than what is used in [13] and yet the
percentages that we report are very close to the percentages
presented in [13].

3. Isolating short–lived operands

As seen in Figure 3, a large percentage of all generated
results are short–lived. We now describe how this can be
exploited to minimize the energy dissipated during
instruction writebacks and commitments.

If a result value is short–lived, why should it be written
into the ROB and later committed into the ARF in the first
place?  All instructions that could potentially consume this
value had already been dispatched by the time of the result
generation.  Therefore,  the produced value is forwarded
directly to all potential consumers waiting in the issue
queue. This avoids the need to read the short–lived values
from the physical register file. The only reason why we
need to maintain a short–lived operand after the cycle of its
generation is to support precise interrupts and to recover
from branch mispredictions.

For energy reduction, we propose to isolate the
short–lived result values from the rest of the generated
results by writing them into a small dedicated register file,
where the short–lived values would reside until they can be
safely discarded without endangering precise state
reconstruction or branch misprediction recovery. The
energy savings then result from writing the majority of the
results into a small register file for short–lived variables
(SRF) instead of writing them to the ROB (or a large
physical register file) and also not committing these values
to the ARF.  Figure 4 shows a P6–like datapath augmented
with the SRF.
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Figure 4.  A P6–style superscalar datapath
augmented with the SRF

SRF

If such a scheme is to be implemented, a number of
problems need to be resolved. These are as follows: When
and how are the short–lived variables inserted into the SRF
and later removed from the SRF to free up the space for the
new results? What happens if the SRF is full? How are the
branch mispredictions handled? How do we reconstruct a
precise state if an exception or an interrupt occurs?  The rest
of this section provides the solutions to these questions and
addresses other considerations of our design.

3.1. Storing operands into the SRF

When an instruction producing a value reaches the
writeback stage and the result value is identified as
short–lived, an entry is established in the SRF when the
following two conditions are valid:

(1)  A free SRF entry exists, and,
(2) No SRF entry associated with the same ROB slot

has already been established.  This requirement is
necessitated by the fact that the ROB index associated with



an instruction is used as an associative search key to locate
the SRF entry for removal (Section 3.2).  Unless this
condition is imposed, two different SRF entries can be
associated with a common ROB slot.  This arises from the
fact that the SRF entry established for an instruction can
exist well after the instruction is committed (to permit the
construction of a precise state, Section 3.4).

When both of the above conditions are valid, a SRF
entry is set up for the instruction, whose result value is
identified as short–lived. The SRF entry is established with
the following fields (Figure 5): (a) the produced value, (b)
the index of the ROB slot assigned to the instruction, (c) the
destination architectural register address, (d) the branch tag
of the preceding branch instruction and, (e) the tag of the
branch instruction preceding the Renamer.  The branch tags
are needed in the SRF to support fast branch misprediction
recovery.  We assume that every branch instruction in flight
is assigned a unique tag dynamically to allow instructions
along its predicted path to be squashed if the branch is
mispredicted.   In Section 3.3, we describe how the
renamer’s branch tag is obtained. Finally, the valid bit of the
SRF entry is set. 

Branch
tag BT1

ROB 
entry
number

Value

Figure 5. The format of a SRF entry

Destination
logical 
register

Branch
tag BT2

Valid
 bit

If either one or both of the above conditions for writing
the result into the SRF are not satisfied, the result is simply
written into the ROB, as usual.  A more radical solution
would be to limit the number of write ports available for
writing the results into the ROB (with the expectation that
the majority of the results will end up being written into the
SRF) and block the writeback if the ROB write port was not
available.  This, however, incurs a significant performance
loss  – in excess of 5% on the average if two ROB write ports
are retained, as revealed by our simulations.

The second condition for establishing a SRF entry, as
described above, can be enforced by simply maintaining a
bit vector, called Allocated_in_SRF, with one bit for every
ROB entry and checking the Allocated_in_SRF  bit
corresponding to the ROB entry of the instruction
producing the value one cycle before the writeback.  If the
bit is set, the value is not written into the SRF.  The
Allocated_in_SRF  bit is set when the instruction allocated
to the respective ROB entry writes its value into the SRF
and the bit is reset when the instruction in evicted from the
SRF.

3.2. Removing entries from the SRF

We now describe how the SRF entries are removed.
The key idea is to keep the value written into the SRF alive
till the next instruction with the same destination
architectural  register (the Renamer) commits.  When the
Renamer commits, it is guaranteed that the previous
instance of its destination architectural register will no
longer be needed.  The SRF entry holding that previous

instance can then be safely discarded.  This is analogous to
the register deallocation procedure in the datapath with a
unified register file for committed and speculative values.

The removal of the values from the SRF is a two–step
process. First, at the time of instruction dispatching, the
Renamer identifies the instruction, whose result value it
will attempt to remove from the SRF.  Second, at the time
of commitment, the Renamer uses this information to
actually remove the value from the SRF under certain
conditions. Removal of a value from the SRF simply
amounts to setting the valid bit of the corresponding SRF
entry to zero.

When a destination architectural register is renamed
and the previous mapping indicates that the register was
mapped to an ROB slot, this ROB slot (obtained directly
from the RAT) is recorded in the ROB entry of the Renamer.
An additional ROB field, called FS (standing for “Flush
SRF”), is used for this purpose.  At the time of commitment,
the Renamer examines the value stored in its FS field and
if the field is set, it attempts to remove an earlier instance
of the same destination architectural register from the SRF
by performing an associative search on the SRF keyed with
the value stored in the FS field.  To avoid reading the entire
FS field for each and every committing instruction, we
extend the FS field by one bit (FS_valid) and set this bit to
1 whenever a value is assigned to the  FS field.  When the
ROB entry is deallocated, this bit is reset to zero. The
contents of this extra bit enable the readout of the remaining
FS bits, thus avoiding the extra energy dissipations in the
course of committing the instructions whose FS field was
not set. In such cases, only one extra bit is actually read in
addition to the regular commitment activity.

In processors that save the old register mapping
information within the ROB to reconstruct a precise state,
this old mapping can be directly used for our purposes and
no additional field (like FS) is needed.  If, however, the
reconstruction of a precise state is performed using the
second register mapping table, which points to the
committed register values, then FS_valid bit in the ROB is
used as described earlier.  In any case, we conservatively
account for the additional power dissipation due to the
incorporation of extra ROB field in our simulations.

The two following conditions must be met for
removing an entry from the SRF established by the
instruction A when its Renamer, say the instruction B,
commits:

(1) The FS field of the Renamer’s ROB entry must
match the ROB index field of some SRF entry.

(2)  The matching SRF entry must not belong to any
instruction different from A.

The second condition is necessitated by the fact that the
ROB slot (say slot number i) originally assigned to A may
have been reassigned to another instruction, say C, by the
time B was committing. This second condition can be
detected by adding a bit vector, Uncommitted_Write, with
a bit for every ROB slot.  Bits in this vector are set and reset
as follows:
• When an instruction assigned to the slot numbered i

within the ROB establishes an entry within  the SRF,
it sets both the Uncommitted_Write [i] flag as well as
the Allocated_in_SRF [i] flag.



• The Uncommitted_Write [i] flag is reset when the
associated instruction is committed.
Recall that the Allocated_in_SRF [i] flag remains set

till the associated SRF entry is discarded.  This flag by itself
does not indicate if the corresponding ROB entry is being
reused.  Let us revisit the scenario described above
involving the instructions A (which was allocated to ROB
entry numbered i) and its renamer B.  When B commits and
the associative search in the SRF keyed by the ROB index
specified by B’s FS field indicates a match,  the following
two cases arise:

Case 1. Uncommitted_Write [i] is not set. This could
happen for the following three reasons:

(1)  The ROB slot numbered i was not reallocated after
its use by A.  As A was committed before B,
Uncommitted_Write[i] was reset at the time A was
committed.

(2) The instruction reassigned to the ROB slot
numbered i  (instruction C) was not considered as
short–lived.

(3) The value produced by instruction C was not
written into the SRF because one of the two conditions for
writing into the SRF (as described in Section 3.1) was not
satisfied – either the associated SRF entry was still in use
by A or the SRF was full.

In any of these three scenarios under Case 1, the SRF
entry in question clearly belongs to A and it would be safe
to discard this entry as B commits.

Case 2. Uncommitted_Write[i] is set: the implication
is that an instruction, say C, following B in program order
was reallocated to the ROB slot indexed by i and this
instruction owns the SRF entry.  As B is committing, C must
follow B in program order, as the Uncommitted_Write[i]
flag is reset only when the associated instruction commits.
In this situation, the SRF entry located by associatively
searching the SRF with the index i clearly belongs to an
instruction other than A and cannot be removed as B
commits.

The steps for removing a SRF entry when an
instruction commits are thus as follows:

(1) Check if the FS field within the ROB entry of the
committing instruction is valid by examining the FS_valid
bit.  Perform the following step if the FS field is valid.  No
entry needs to be removed from the SRF if the FS field is
invalid.

(2)  Assume that the value of the valid FS field is i.  If
Uncommitted_Write [i] is not set, then associatively locate
the SRF entry whose ROB index field equals i and
invalidate the entry if one if found.

In our power evaluations, we assume that checking of
the Uncommitted_Write bit and performing the associative
search is done in parallel for performance reasons. It is
possible to slightly optimize the accesses from the energy
standpoint by enabling the associative search in the SRF
only when the Uncommitted_Write[i] bit is not set and the
Allocated_in_SRF[i]  bit is set. In practice, however, this
has little advantage because in the majority of the cases the
associative search would be enabled  if the FS field contains
a valid ROB index.

Figure 6 depicts the process of removing the values
from the SRF.  We continue with the example that was used

Figure 6.  Removing the values from the
SRF (B is the renamer for A)
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in Section 2.  Here, the ADD instruction (instruction B)
renames the register R1, whose previous instance is
produced by the LOAD instruction (instruction A).  Thus,
the ADD acts as the Renamer for the LOAD.  Assume that
the LOAD instruction is allocated to the ROB entry 31 and
the ADD instruction is allocated to the ROB entry 33. When
the ADD is dispatched, it obtains the previous mapping of
its destination register (ROB slot 31 in this case) and sets
the FS field within its own ROB entry to this value.  The
LOAD instruction, whose result value was identified as
short–lived, establishes the SRF entry, as indicated in the
picture. When the ADD commits, it uses the value stored
in its FS field (31 in this case) to perform the associative
search within the SRF. Provided that the
Uncommitted_Write[31] is not set, the entry established in
the SRF by the LOAD is removed by the ADD in the course
of its commitment.

When an instruction commits, it also uses the value of
the Allocated_in_SRF  bit corresponding to its own ROB
entry to decide whether the generated result value has to be
written into the ARF.  If the bit is not set, the produced result
value is in the ROB and it is committed into the ARF in a
regular manner. If the Allocated_in_SRF bit is set, the value
generated by this instruction is short–lived, it resides in the
SRF and it does not have to be written into the ARF.

3.3. Handling branch mispredictions

The branch mispredictions can cause an instruction
that is designated to remove an SRF entry (the Renamer) to
get squashed.  If no additional action is taken on the branch
mispredictions,  then some values in the SRF will never be
removed. Suppose that in the above example the instruction
B is squashed as a result of a branch misprediction (assume
that a branch is used in the place of the SUB instruction and
this branch is mispredicted).  In that case, no instruction



will be responsible for invalidating the SRF entry written
by the instruction A.

One way to handle this situation is to walk through the
instructions on the mispredicted path in the ROB and undo
the actions performed by these instructions on the SRF. No
additional support is needed on the SRF in this case, but
such misprediction handling is slow (because for a W–way
machine at most W instructions can be examined in one
cycle) and is hardly an option in today’s high–performance
designs. Most modern processor implementations rely
instead on the use of aggressive checkpointing and branch
tagging for quick recovery from the branch
misspeculations.  We now describe how similar mechanism
is used with the SRF.

Each entry in the SRF is tagged with the branch tag
(BT1 in Figure 5) of the branch instruction preceding the
Renamer of the instruction associated with the SRF entry.
When such a branch is mispredicted, its tag is broadcast
across the SRF and the SRF entries of all instructions whose
renamers are on the mispredicted path are removed from
the SRF and written to either the ROB slot (if the instruction
whose value is removed from the SRF has not committed
yet) or to the ARF (if the instruction had already been
committed).   In the above example, the value produced by
the instruction A is removed from the SRF and is written to
A’s ROB slot (say, slot i) if A had not yet committed
(Uncommitted_Write[i] = 1) or to A’s destination register if
A had committed (Uncommitted_Write[i] = 0).

The number of entries that can be removed in this
manner from the SRF in one cycle depends on the number
of read ports available on the SRF.  To minimize the
misprediction recovery latency, we multiplex the ports
available for instruction writebacks to also support the SRF
reads during the handling of mispredictions.  This results in
no performance degradation, as in almost all of the cases the
SRF can be rid of the affected entries in one cycle.

We now describe how the branch tag BT1 of the branch
instruction immediately preceding the Renamer is obtained
at the time of establishing a SRF entry – during the last
execution cycle. When the Renamer is dispatched and
renames a non–committed destination register of an
instruction which was allocated to slot number j in the
ROB, it obtains the branch tag of the preceding branch
instruction (BT1 in this case) and writes this tag into the j–th
entry of a separate array called Branch_Tags, with one entry
for each ROB slot. This step is not needed if the Renamer
renames an already committed value.  During the last
execution cycle, an instruction whose Renamed bit is set,
reads the value stored in the Branch_Tags array entry
indexed by its ROB slot and in the next cycle writes this
value into its SRF entry, if one can be established.  To avoid
the ambiguity in the branch tags, we use a different set of
branch tags for branch instructions allocated across two
consecutive usages of the ROB.  In total, we allow 16
unique branch tags to be used (with 8 unresolved in–flight
branches allowed simultaneously), thus requiring 4 bits to
uniquely identify each branch.

The second branch tag in a SRF entry, BT2 in Figure 5,
is used to identify the branch that precedes the instruction
whose value is inserted into the SRF.  If such a branch is
mispredicted,  the value in the SRF simply has to be

removed, without any need to copy it to the ROB or the ARF
since the value was generated on the mispredicted path.  On
the occasion of multiple branch instructions on the
mispredicted path, the branch tags of each branch are
broadcast across the SRF, starting from the oldest branch.
The number of cycles needed to recover from a
misprediction can then increase, because only one branch
tag can be handled in a cycle. However, it does not degrade
the overall performance compared to the baseline machine,
because similar mechanisms are used in the baseline
implementation  to flush the stale instructions from the
instruction queue and from the FUs.

An associative lookup for the two branch tags is thus
performed within the SRF on every branch misprediction.
If both branch tags within an entry match the branch tag
being broadcast, then the matching entry is simply
invalidated.   This corresponds to the situation when an
instruction whose value is in the SRF, as well as its Renamer
are both on the mispredicted path.

In addition to the state of the SRF, the precise state of
the three bit–vectors used in our design needs to be restored.
We now describe how this can be accomplished. The
contents of the three bit–vectors are restored to a precise
state by walking through the instructions on the
mispredicted path in the ROB and undoing the
modifications performed on these bit–vectors. Specifically,
the FS field of each squashed instruction, if set, indicates
the bit position in the Renamed bit–vector that was set by
the instruction in question. Consequently, to recover the
state of the Renamed bit–vector following a branch
misprediction,  it is necessary to reset the values of all such
bits back to zero.  The contents of the Allocated_in_SRF  bit
are reset for all instructions on the mispredicted path, whose
Uncommitted_Write bit is set to zero. The
Uncommitted_Write bit of each squashed instruction is then
reset. To summarize, the following steps are performed
during the examination of the ROB entry numbered i for the
instruction on the mispredicted path:

1) Check if the FS field of the ROB entry numbered i
is set. If it is set, then set the value of the Renamed bit
indexed by the FS field to zero.

2) Check if the Uncommitted_Write[i] bit is reset (set
to zero). If it is, then reset the Allocated_in_SRF[i]  bit; if
it is not, then proceed to the next step.

3) Reset the Uncommitted_Write[i] bit.
Steps 1) and 2) above can be performed in parallel. Due

to the small access time of the bit–vectors, all three steps
can be easily performed in one clock cycle – this was
corroborated by our circuit simulations. For a W–way
machine, W instructions on the mispredicted path can be
examined in such a manner in one cycle. The overall branch
misprediction recovery latency is not impacted though,
because the actions detailed in the above three steps are
performed in parallel with the reconstruction of the state of
the register alias table.

3.4. Supporting precise interrupts
 

Almost no additional support is needed in our scheme
for reconstructing a precise state on the occasion of an



interrupt or an exception.   The values written into the SRF
represent part of a precise program state when instructions
that produced these values commit.  Ideally, the registers
targeted by these values are overwritten in a very short
period of time, but exceptions or interrupts present
complications.

Let us return to the example that we considered earlier
in this section and assume that the instruction A wrote its
value into the SRF and subsequently committed.  In the
meantime,  the instruction D that was dispatched between A
and B caused an exception.  To reconstruct the precise
register state at this point, the value produced by the
instruction A has to be copied from the SRF to the ARF.
Notice that after all instructions preceding the faulting
instruction commit and the values of all squashed
instructions are removed from the SRF, any architectural
register is targeted by at most one value in the SRF.  This
is a direct consequence of the second condition for
removing a SRF entry.  To reconstruct a precise state, it is
therefore sufficient to simply copy the contents of all valid
entries in the SRF into their corresponding architectural
registers, as indicated by the destination architectural
address field of each SRF entry.  Since a sufficient number
of read ports on the SRF is maintained (again, we are
multiplexing the ports normally used for writebacks) and
because of the small size of the SRF, such movement of
short–lived values does not increase the interrupt handling
time in any significant fashion.

3.5. Complexity of the solution

Our scheme for avoiding the writes of short–lived
operands into the ROB slots/physical registers and for
avoiding writes into the ARF during commitments incurs
modest additional complexity.  Three multi–ported
bit–vectors, Renamed, Allocated_in_SRF and
Uncommitted_Write, with one bit for each ROB entry, are
used.  We also need to maintain a 4–bit wide array
Branch_Tags, with one entry for each ROB slot.
Additionally, the ROB is extended to include one extra field
(FS), 8–bit wide for the ROBs of 128 entries or less with one
of these bits used to identify the validity of this field.
(Again, this is not needed in processors that already
checkpoint the old register mappings in the ROB).  Of
course, the register file to implement the SRF is also
needed, with W read/write ports.  The W ports to the SRF
can be multiplexed between the writes of the operand
values in the normal course of operations and the (disjoint)
reads that are required for restoring the system to a precise
state or in the course of handling branch mispredictions.
The ROB index field of the SRF needs to be implemented
as a CAM to support associative search to perform the
invalidation of the SRF entries.  To minimize the energy
dissipated in the course of such associative lookups, we
make use of the energy–efficient dissipate–on–match
comparators proposed in [5].  These comparators dissipate
energy predominantly on a full match in the comparands.
Also, the comparators operate slightly faster than the
traditional dissipate–on–mismatch pull–down comparator
circuits.  As at most one entry in the SRF can match the

ROB slot that is broadcast by a committing instruction, the
use of dissipate–on–match comparators thus results in
significant energy savings. (Despite the obvious
advantages of the dissipate–on–match comparators, their
use is not the main reason of our energy savings. Even the
use of traditional pull–down comparators to perform
associative search within the SRF results in the overall
energy reduction). Compared to the ROB, the SRF is a
lightly–ported structure, as only the ports needed for
writebacks are maintained. No operand reads are needed
from the SRF, as all short–lived values are forwarded to the
data slots within the issue queue at the time of result
writebacks.

Associative searching is also used on the branch tag
fields in the SRF.  However, the power dissipations are less
acute in this case, because the branch tag fields are only
examined in the course of branch mispredictions which are
relatively infrequent. In our power estimations, we
accounted for the energy dissipated in the process of
accessing the bit vectors and the SRF, including the
associative lookups. The energy savings result from writing
the majority of the short–lived result values into the small
lightly–ported  SRF.  Notice that the SRF design is very
simple, because no operand reads are performed from the
SRF.  The values are neither written into the ROB, nor are
they committed into the ARF, saving a significant amount
of energy.  Our scheme also dissipates energy in the course
of setting up a SRF entry and it expends energy to copy
selected SRF values to either the ROB or the ARF on the
occasion of branch mispredictions, exceptions or
interrupts.  As seen from the results presented later, despite
the additional energy dissipations incurred in our design,
we have a non–trivial savings in the overall energy
associated with writebacks and commitments and the
overall energy reduction.

4.  Simulation methodology

For estimating the energy savings achieved by using
our techniques, we used a significantly modified version of
the Simplescalar simulator [1] to implement realistic
models for such datapath components as the ROB
(integrating a physical register file), the issue queue,  the
rename table, the ARF and the SRF. The studied processor
configuration is shown in Table 1. We assumed a pipeline
with 2 stages for instruction fetch, one stage for register
renaming, 2 stages for accessing the register file (ROB) and
one stage each for issue, execution, writeback and
commitment.  (Of course, instructions with multi–cycle
execution latencies take more than one cycle to execute).

We randomly selected 10 integer SPEC 2000
benchmarks (gap, gcc, gzip, parser, perlbmk, twolf, vortex,
mcf, bzip and vpr) and 8 floating point SPEC 2000
benchmarks (applu, art, mesa, mgrid, swim, apsi, equake
and wupwise). Benchmarks were compiled using the
Simplescalar GCC compiler that generates code in the
portable ISA (PISA) format. Reference inputs were used for
all the simulated benchmarks. The results from the
simulation of the first 1 billion instructions were discarded
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Figure 7. Percentage of the generated results written into the SRF
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Figure 8. Average lifetime of a value in the SRF
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and the results from the execution of the following 100
million instructions were used.

Table 1. Architectural configuration of a 
simulated processor

Parameter Configuration

Machine width 4–wide fetch, 4–wide issue, 4–wide commit

Window size 32 entry issue queue,  32 entry load/store queue,
96–entry ROB with the allocation of 2 ROB slots
for doubles

Function Units
and Latency
(total/issue)

4 Int Add (1/1), 1 Int Mult (3/1) / Div (20/19), 2
Load/Store (2/1), 4 FP Add (2), 1FP Mult (4/1) /
Div (12/12) / Sqrt (24/24)

L1 I–cache 32 KB, 2–way set–associative, 32 byte line, 2
cycles hit time

L1 D–cache 32 KB, 4–way set–associative, 32 byte line, 2
cycles hit time

L2 Cache 
unified

512 KB, 4–way set–associative, 128 byte line, 8
cycles hit time

BTB 1024 entry, 4–way set–associative

Branch Predictor Combined with 1K entry Gshare, 10 bit global
history, 4K entry bimodal, 1K entry selector

Memory 128 bit wide, 100 cycles first chunk, 2 cycles 
interchunk

TLB 64 entry (I), 128 entry (D), fully associative, 30
cycles miss latency

For estimating the energy/power of the datapath
components used in this study, the event counts gleaned
from the simulator were used, along with the energy

dissipations, as measured from the actual hand–crafted
VLSI layouts using SPICE.  CMOS layouts for the ROB,
the ARF, the SRF and the bit–vectors in a 0.18 micron 6
metal layer process (TSMC) were used to get an accurate
idea of the energy dissipations for each type of transition.

5. Results and discussions

In this section we evaluate our design in terms of the
percentage of data movements that are avoided as well as
in terms of the actual energy dissipation. 

Figure 7 shows the percentage of the generated result
values that are written into the SRF for various SRF sizes.
For 8–entry SRF, 40% of the produced values are stored in
the SRF.  Across the individual benchmarks, the smallest
percentage is recorded for art – 21.6%.  For 16, 32, and
48–entry SRF, 60% and 77% and 82% of all generated
values are written into the SRF respectively.  These
percentages show the potential for energy reduction, as the
values written into the SRF are not written into the ROB and
not committed to the ARF.  Finally, for comparison
purposes the last bar of Figure 7 shows the percentage of
result values identified as short–lived (this is identical to the
results presented in Figure 3).  The disparity between the
percentage of short–lived values and the percentage of
values that are written into the SRF is due to the limited SRF
size.

Figure 8 shows the average lifetime of a value in the
SRF. The lifetime is defined as the number of cycles
between the insertion of a value into the SRF and the
removal of this value. As expected, the lifetimes are short
(about 10 cycles) for the majority of the simulated
benchmarks, because the renamers are in close proximity
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Figure 9. Percentage of result values that do not have to be committed to the ARF
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Figure 10. Energy per cycle in the ROB, the ARF, and the SRF
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to the instructions whose destination registers they rename.
The only benchmark with the relatively high value lifetime
in the SRF is art.  This is the primary reason why the SRF
is frequently full for this benchmark and only a small
percentage of the short–lived results can be written into the
SRF. Notice also that a value lifetime in the SRF does not
always correlate with the percentage of values written into
the SRF. This is illustrated by mcf and gzip benchmarks.
The reason for the relatively high percentage of values
written into the SRF for mcf  benchmark is the low IPC (0.67
for mcf vs. 2.1 for gzip vs. 1.57 for the average across all
integer benchmarks). Consequently, despite the relatively
high average value lifetime in the SRF, the pressure on the
SRF is low and in many cases a SRF entry is freed up before
a new short–lived value arrives.

Figure 9 shows the percentages of result values that do
not have to be committed to the ARF.  On the average, 42%,
62%, 79% and 84% of the data moves during commitment
are avoided for 8, 16, 32 and 48 entries in the SRF
respectively.  These results are in close proximity to the
statistics presented in Figure 7, as expected.  The unintuitive
result is that the percentage of the data movements avoided
at commitment is slightly higher (by about two percentage
points in each case) than the percentage of generated results
that are not written into the ROB.  This disparity is due to
the instructions that produce the results but, due to branch
mispredictions,  get squashed out of the pipeline before they
are committed.

Figure 10 shows the combined energy dissipated per
cycle in the ROB, the ARF, the SRF, the array of branch tags
and the bit–vectors used in our scheme.  The energy of the
ARF and the SRF is shown explicitly in the form of subbars,
and the energy dissipated while accessing the bit vectors

and the array of branch tags is assumed to be a part of the
ROB energy.  If a larger SRF is used, the energy savings
from not writing higher percentage of result values into the
ROB and not committing these values to the ARF outweigh
the increased dissipations in the course of writes to the
larger SRF for the SRF sizes of up to 32 entries.  As the SRF
size is increased beyond 32 entries, the resulting energy
savings depend on the benchmark.  For some benchmarks
the energy savings are higher with 48–entry SRF as
compared to 32–entry SRF.  The reason is a higher
percentage of data movements that are avoided for these
benchmarks. For other benchmarks, the use of a 48–entry
SRF results in higher overall energy dissipations, because
there is no improvement compared to a 32–entry SRF in
terms of the eliminated data movements and larger SRF
dissipates some additional energy.  Other factors that have
significant power impact are the IPCs and the actual
percentage of short–lived values written into the SRF.  For
high–IPC benchmarks with significant percentage of
short–lived values, the write traffic to the SRF is high and
that results in noticeable elevation of the SRF energy as we
move from 32 to 48 entries (bzip2, gzip). 

The resulting average energy savings within the ROB
and the ARF are 9%, 16% and 21% and 23% for the SRF
of 8, 16, 32 and 48 entries respectively.  Somewhat different
behavior of integer and floating point benchmarks can be
explained by the fact that two entries in the SRF are
allocated for storing a double–precision result and most of
the results generated by floating point benchmarks are in
the double–precision format.  While it was beyond the
scope of this paper to perform global power analysis, some
rough estimates can be obtained from the numbers
presented in [6].  In [6], Folegnani and Gonzalez show the
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Figure 11. Energy per cycle in the ARF, the Rename buffers and the SRF
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power distribution across the major blocks of a P6–like
microprocessor. According to their analysis, the ROB
represents about 27% of the overall chip power.  Assuming
that similar power distributions are true for the
configurations that we studied, our technique then results
in about 5% savings of the overall chip power.

Figure 11 shows the energy dissipation in the system
that uses a set of rename buffers – physically separate from
the ROB – to implement physical registers. The results
presented in Figure 11 are for the processor with a 96–entry
ROB and 64 rename buffers.  The use of fewer rename
buffers than the ROB entries is a consequence of the fact
that some instructions, notably branches and stores, do not
require any destination register and thus no rename buffer
allocation is needed for these instructions. Our technique is
directly applicable to this style of datapath if we use the
rename buffer address instead of the ROB slot in the FS
fields. Also, the associative search in the SRF is performed
using the rename buffer address as the key. Energy savings
in the ARF and the rename buffers are 14%, 21% and 24%
if the SRF of 8, 16 and 32 entries is used respectively.
Again, the energy dissipated while accessing the bit vectors
and the array of branch tags is assumed to be a part of the
rename buffers energy. Since the energy dissipated in the
rename buffers is roughly half of the energy dissipated in
the ROB integrating physical registers, the overall chip
energy savings are in the order of 2–3% in this case. Still,
as this is achieved with no performance loss, the solution is
attractive.

6. Related work

It has been noticed by several researchers, that most of
the register instances in a datapath are short–lived.  In [7],
Franklin and Sohi report the statistics about the useful
lifetime of register instances.  They conclude that
maintaining an auxiliary register storage of as little as 30
registers to buffer the most recently generated results
allows to avoid the writes of about 80% of the produced
values into the register file, since these values are retrieved
by all potential consumers during their residency in the
auxiliary register storage.  However, no solution was
proposed in [7] to identify when it is safe to drop the values
from the auxiliary storage.  In this paper, we propose
exactly such mechanism.

The exploitation of short–lived variables continued
with the work of Lozano and Gao [13], who observed that

about 90% of the generated result values are short–lived, in
the sense that they are exclusively consumed during their
residency in the ROB.  The authors of [13] then proposed
mechanisms to avoid the commitment of such variables to
the architectural register file and also avoid register
allocation for such variables.  Their approach is based on a
compiler analysis, where the ROB slots are effectively
exposed to the compiler in the form of symbolic registers
for storing the short–lived variables.  In contrast to the
scheme of [13], our approach does not rely on a compiler
support.

In a recent study [17],  Savransky, Ronen and Gonzalez
proposed a pure hardware mechanism to avoid useless
commits in the datapath that uses the ROB slots to maintain
the non–committed results.  Their scheme delays the copy
from the ROB to the architectural register file until the ROB
slot is reused for a subsequent instruction.  In many cases,
the register represented by this slot is invalidated by a newly
retired instruction before it needs to be copied.  Such a
scheme avoids about 75% of commits, thus saving energy.
The overhead in the scheme of [17] is in the form of the
additional mapping table to keep track of the place in which
the last non–speculative copy of each architectural register
is stored.  Our technique and the scheme of [17] represent
two different approaches to avoiding the copying of
committed register values from the ROB to the ARF.  While
the comparison of the results presented in [17] with our
results is not quite indicative, because different ISAs,
benchmarks and processor configurations were used, the
percentage of result values that do not need to be
committed,  as reported in [17], is comparable to the similar
percentage achieved by our design.  Our scheme also saves
the energy dissipated in the course of writebacks, which
was not addressed in [17], where each and every generated
result value is still written into the ROB. While the same
can perhaps be achieved using the multi–banked
implementation  of the ROB (or the rename buffers),
multi–banking incurs considerable implementation
complexity and has an inherent performance loss due to the
bank conflicts. In fact, the complex control structures of the
banked schemes are likely to limit the processor cycle time
[20].  In [20], additional pipeline stage is introduced to
arbitrate for the ports of multi–banked register files thus
removing the port arbitration from the critical
wakeup–select cycle.  Our scheme, on the other hand, has
virtually no performance loss and no arbitration is needed.



The idea of caching recently produced values was used
in [9], where a cache called the VAB (Value Aging Buffer)
was used to hold most recently generated results.   The VAB
scheme has an inherent performance loss, because the
accesses to the VAB and the register file are serialized.

Alternative register file organizations (mainly using
various forms of caching and partitioning) have also been
explored for reducing the access time and energy
[2,3,4,11,21,22,23].

In [12], we introduced a scheme for reducing the ROB
complexity by eliminating the read ports needed on the
ROB for reading the source operands.  To compensate for
the resulting performance degradation, a small number of
associatively–addressed  retention latches was used to
satisfy most of the requests that would otherwise have to be
serviced from the ROB.  In [26], the scheme was enhanced
by not writing the short–lived operands into retention
latches. The scheme of [12] and especially [26] can be used
in conjunction with the technique proposed in this paper.

7. Concluding remarks

This paper proposed a technique to effectively remedy
some of the principal inefficiencies associated with the
datapaths that use separate register file for storing
committed register values.  Our scheme isolates the
short–lived values in a small, dedicated register file
avoiding the need to write these values into the ROB (or the
rename buffers) and later commit them to the architectural
register file. With minimal additional hardware support and
with no performance degradation, our technique eliminates
close to 80% of unnecessary data movements in the course
of writebacks and commitments and results in the energy
savings of about 20–25% on the ROB or the rename buffers.
For considered processor configurations, this roughly
translates to about 5% of the overall chip energy savings for
the datapath, where the physical registers are implemented
as the ROB slots, and to about 2–3% of the overall energy
savings if physical registers are maintained in a separate set
of rename buffers.
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